化学
表面张力
色谱法
均质机
阿拉伯树胶
乳清蛋白
分离乳清蛋白粉
卵磷脂
乳状液
油滴
化学工程
食品科学
有机化学
物理
量子力学
工程类
作者
Long Bai,Siqi Huan,Jiyou Gu,David Julian McClements
标识
DOI:10.1016/j.foodhyd.2016.06.035
摘要
Nanoemulsions are utilized within the food, pharmaceutical, and personal care industries because of their unique physicochemical properties and functional attributes: high optical clarity; prolonged stability; and, enhanced bioavailability. For many applications, it is desirable to utilize natural ingredients to formulate nanoemulsions so as to create "label-friendly" products. In this study, we compared the effectiveness of a number of natural emulsifiers at fabricating corn oil-in-water nanoemulsions using dual-channel microfluidization. These emulsifiers were either amphiphilic biopolymers (whey protein and gum arabic) or biosurfactants (quillaja saponin and soy lecithin). Differences in the surface activities of these emulsifiers were characterized using interfacial tension measurements. The influence of emulsifier type, concentration, and homogenization pressure on the efficiency of nanoemulsion formation was examined. The long-term stability of the fabricated nanoemulsions was also monitored during storage at ambient temperature. For all of the natural emulsifiers, nanoemulsions could be produced by dual-channel microfluidization, with the mean particle diameter decreasing with increasing emulsifier concentration and homogenization pressure. Whey protein isolate and quillaja saponin were more effective at forming nanoemulsions containing fine droplets than gum arabic and soy lecithin, with a lower amount of emulsifier required and smaller droplets being produced. This effect was attributed to faster emulsifier adsorption and a greater reduction in interfacial tension leading to more efficient droplet disruption within the homogenizer for saponins and whey proteins. This study highlights the potential of dual-channel microfluidization for efficiently producing label-friendly nanoemulsions from natural emulsifiers.
科研通智能强力驱动
Strongly Powered by AbleSci AI