Constructing Inverse Probability Weights for Continuous Exposures

异方差 同方差 数学 统计 概率分布 分位数
作者
Ashley I. Naimi,Erica E. M. Moodie,Nathalie Auger,Jay S. Kaufman
出处
期刊:Epidemiology [Ovid Technologies (Wolters Kluwer)]
卷期号:25 (2): 292-299 被引量:118
标识
DOI:10.1097/ede.0000000000000053
摘要

Inverse probability-weighted marginal structural models with binary exposures are common in epidemiology. Constructing inverse probability weights for a continuous exposure can be complicated by the presence of outliers, and the need to identify a parametric form for the exposure and account for nonconstant exposure variance. We explored the performance of various methods to construct inverse probability weights for continuous exposures using Monte Carlo simulation. We generated two continuous exposures and binary outcomes using data sampled from a large empirical cohort. The first exposure followed a normal distribution with homoscedastic variance. The second exposure followed a contaminated Poisson distribution, with heteroscedastic variance equal to the conditional mean. We assessed six methods to construct inverse probability weights using: a normal distribution, a normal distribution with heteroscedastic variance, a truncated normal distribution with heteroscedastic variance, a gamma distribution, a t distribution (1, 3, and 5 degrees of freedom), and a quantile binning approach (based on 10, 15, and 20 exposure categories). We estimated the marginal odds ratio for a single-unit increase in each simulated exposure in a regression model weighted by the inverse probability weights constructed using each approach, and then computed the bias and mean squared error for each method. For the homoscedastic exposure, the standard normal, gamma, and quantile binning approaches performed best. For the heteroscedastic exposure, the quantile binning, gamma, and heteroscedastic normal approaches performed best. Our results suggest that the quantile binning approach is a simple and versatile way to construct inverse probability weights for continuous exposures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
银角大王发布了新的文献求助10
刚刚
1秒前
冷傲的山柳完成签到,获得积分10
2秒前
罗生门发布了新的文献求助10
2秒前
早稻人发布了新的文献求助10
2秒前
GongFei发布了新的文献求助10
2秒前
mmmm完成签到,获得积分10
2秒前
ssw发布了新的文献求助10
3秒前
Jasper应助lchenbio采纳,获得10
3秒前
款冬完成签到,获得积分10
3秒前
5秒前
5秒前
5秒前
Dd完成签到,获得积分10
5秒前
5秒前
余博博完成签到,获得积分10
6秒前
王一一发布了新的文献求助10
7秒前
劲秉应助1234采纳,获得20
8秒前
Jenny应助奋斗的问夏采纳,获得10
9秒前
9秒前
暮色微凉发布了新的文献求助10
9秒前
mong发布了新的文献求助10
9秒前
9秒前
爆米花应助略略略采纳,获得10
9秒前
姜维发布了新的文献求助10
10秒前
Ava应助积德行善SCI无边采纳,获得10
10秒前
科目三应助小小采纳,获得10
10秒前
李爱国应助危机的硬币采纳,获得10
11秒前
11秒前
行歌发布了新的文献求助10
11秒前
小胡同学发布了新的文献求助10
11秒前
Hu发布了新的文献求助10
12秒前
12秒前
Xz驳回了酷波er应助
12秒前
袁雁桃发布了新的文献求助10
13秒前
852发布了新的文献求助10
14秒前
Hao666发布了新的文献求助10
15秒前
17秒前
科研通AI2S应助小泉采纳,获得10
18秒前
SMLW完成签到 ,获得积分10
18秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470572
求助须知:如何正确求助?哪些是违规求助? 3063599
关于积分的说明 9084461
捐赠科研通 2754032
什么是DOI,文献DOI怎么找? 1511188
邀请新用户注册赠送积分活动 698333
科研通“疑难数据库(出版商)”最低求助积分说明 698221