亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

超声波传感器 声学 多普勒效应 流量(数学) 两相流 材料科学 人工神经网络 相(物质) 机械 计算机科学 物理 人工智能 量子力学 天文
作者
Baba Musa Abbagoni,Hoi Yeung
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:27 (8): 084002-084002 被引量:69
标识
DOI:10.1088/0957-0233/27/8/084002
摘要

The identification of flow pattern is key issue in multiphase flow which encountered in the petrochemical industry.Gas-liquid two-phase flow is difficult to identify the gas-liquid flow regimes objectively.This paper presents a feasibility of a clamp-on instrument for objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and artificial neural network.It is on recording and processing of the ultrasonic signals reflected from the two-phase flow.Experimental data obtained on a horizontal test rig with total pipe length of 21 m long and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes.Multilayer Perceptron Neural Networks (MLPNNs) used for developing the classification model.The classifier requires features as input which is representative of the signals.Ultrasound signal features extracted by applying both power spectral density (PSD) and discrete wavelet transforms (DWT) methods to the flow signals.A classification scheme of "1-of-C coding method for classification" was adopted to classify features extracted into one of four flow regime categories.To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using output of a first level networks features as input features.Addition of the two network models provided a combined neural network models which has achieved higher accuracy than single neural network models.Classification accuracies evaluated in the form of both the PSD and DWT features.The success rates of the two models are: (1) using PSD features, the classifier missed three datasets out of 24 test datasets of the classification and scored 87.5% accuracy.(2) With the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy.This approach has demonstrated success of a clamp-on ultrasound sensor for flow regime classification and it would be possible in industry practice.It is considerably more promising than other techniques as it uses of non-invasive and nonradioactive sensor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
研友_VZG7GZ应助Marciu33采纳,获得10
3秒前
ceeray23发布了新的文献求助20
8秒前
柔弱的纸鹤完成签到,获得积分10
32秒前
旸羽完成签到,获得积分10
37秒前
咕咕果完成签到,获得积分10
42秒前
rose完成签到,获得积分10
48秒前
Orange应助呆萌雨筠采纳,获得10
53秒前
咕咕果发布了新的文献求助30
54秒前
逮劳完成签到 ,获得积分10
56秒前
1分钟前
Marciu33发布了新的文献求助10
1分钟前
1分钟前
光亮的绮晴完成签到 ,获得积分10
1分钟前
归雁发布了新的文献求助10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
小马甲应助科研通管家采纳,获得30
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
科研通AI6应助咕咕果采纳,获得10
1分钟前
英俊的铭应助Marciu33采纳,获得10
1分钟前
ririkyt完成签到 ,获得积分10
1分钟前
汉堡包应助excellent采纳,获得10
1分钟前
无花果应助归雁采纳,获得10
1分钟前
1分钟前
1分钟前
xzyxihuan关注了科研通微信公众号
1分钟前
excellent发布了新的文献求助10
1分钟前
jhonnyhuang发布了新的文献求助10
2分钟前
xzyxihuan发布了新的文献求助10
2分钟前
科研通AI5应助jhonnyhuang采纳,获得10
2分钟前
兴奋的鼠标完成签到 ,获得积分20
2分钟前
Ronan完成签到 ,获得积分10
2分钟前
李健应助是多少采纳,获得10
3分钟前
3分钟前
lihuahui发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5042636
求助须知:如何正确求助?哪些是违规求助? 4273097
关于积分的说明 13322056
捐赠科研通 4085956
什么是DOI,文献DOI怎么找? 2235463
邀请新用户注册赠送积分活动 1242977
关于科研通互助平台的介绍 1170074