Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

超声波传感器 声学 多普勒效应 流量(数学) 两相流 材料科学 人工神经网络 相(物质) 机械 计算机科学 物理 人工智能 量子力学 天文
作者
Baba Musa Abbagoni,Hoi Yeung
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:27 (8): 084002-084002 被引量:69
标识
DOI:10.1088/0957-0233/27/8/084002
摘要

The identification of flow pattern is key issue in multiphase flow which encountered in the petrochemical industry.Gas-liquid two-phase flow is difficult to identify the gas-liquid flow regimes objectively.This paper presents a feasibility of a clamp-on instrument for objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and artificial neural network.It is on recording and processing of the ultrasonic signals reflected from the two-phase flow.Experimental data obtained on a horizontal test rig with total pipe length of 21 m long and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes.Multilayer Perceptron Neural Networks (MLPNNs) used for developing the classification model.The classifier requires features as input which is representative of the signals.Ultrasound signal features extracted by applying both power spectral density (PSD) and discrete wavelet transforms (DWT) methods to the flow signals.A classification scheme of "1-of-C coding method for classification" was adopted to classify features extracted into one of four flow regime categories.To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using output of a first level networks features as input features.Addition of the two network models provided a combined neural network models which has achieved higher accuracy than single neural network models.Classification accuracies evaluated in the form of both the PSD and DWT features.The success rates of the two models are: (1) using PSD features, the classifier missed three datasets out of 24 test datasets of the classification and scored 87.5% accuracy.(2) With the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy.This approach has demonstrated success of a clamp-on ultrasound sensor for flow regime classification and it would be possible in industry practice.It is considerably more promising than other techniques as it uses of non-invasive and nonradioactive sensor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
显隐发布了新的文献求助10
1秒前
1秒前
1秒前
兜有米完成签到,获得积分10
1秒前
Owen应助猪肉超人菜婴蚊采纳,获得10
2秒前
研友_VZG7GZ应助冷酷海安采纳,获得10
3秒前
会飞的鱼发布了新的文献求助10
3秒前
晚风将近发布了新的文献求助10
3秒前
斯文小白菜完成签到 ,获得积分10
3秒前
李爱国应助寒树采纳,获得10
3秒前
ding应助坚强的笑天采纳,获得10
3秒前
4秒前
wangbq完成签到 ,获得积分10
4秒前
共享精神应助小刘同学采纳,获得10
5秒前
王尧完成签到,获得积分10
5秒前
zrz完成签到,获得积分10
6秒前
6秒前
嬴渠梁发布了新的文献求助30
6秒前
6秒前
NexusExplorer应助糟糕的访梦采纳,获得10
6秒前
dawn完成签到,获得积分10
6秒前
7秒前
大大大发布了新的文献求助10
7秒前
风之圣痕完成签到,获得积分10
7秒前
王尧发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
执着的玉米完成签到,获得积分20
10秒前
意羡完成签到,获得积分10
11秒前
小蘑菇应助兔宝宝采纳,获得10
11秒前
11秒前
11秒前
11秒前
大大大完成签到,获得积分10
12秒前
14秒前
14秒前
14秒前
15秒前
共享精神应助xttju2014采纳,获得10
15秒前
LRM发布了新的文献求助10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742911
求助须知:如何正确求助?哪些是违规求助? 5411336
关于积分的说明 15346296
捐赠科研通 4883960
什么是DOI,文献DOI怎么找? 2625453
邀请新用户注册赠送积分活动 1574294
关于科研通互助平台的介绍 1531234