Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

超声波传感器 声学 多普勒效应 流量(数学) 两相流 材料科学 人工神经网络 相(物质) 机械 计算机科学 物理 人工智能 量子力学 天文
作者
Baba Musa Abbagoni,Hoi Yeung
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:27 (8): 084002-084002 被引量:69
标识
DOI:10.1088/0957-0233/27/8/084002
摘要

The identification of flow pattern is key issue in multiphase flow which encountered in the petrochemical industry.Gas-liquid two-phase flow is difficult to identify the gas-liquid flow regimes objectively.This paper presents a feasibility of a clamp-on instrument for objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and artificial neural network.It is on recording and processing of the ultrasonic signals reflected from the two-phase flow.Experimental data obtained on a horizontal test rig with total pipe length of 21 m long and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes.Multilayer Perceptron Neural Networks (MLPNNs) used for developing the classification model.The classifier requires features as input which is representative of the signals.Ultrasound signal features extracted by applying both power spectral density (PSD) and discrete wavelet transforms (DWT) methods to the flow signals.A classification scheme of "1-of-C coding method for classification" was adopted to classify features extracted into one of four flow regime categories.To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using output of a first level networks features as input features.Addition of the two network models provided a combined neural network models which has achieved higher accuracy than single neural network models.Classification accuracies evaluated in the form of both the PSD and DWT features.The success rates of the two models are: (1) using PSD features, the classifier missed three datasets out of 24 test datasets of the classification and scored 87.5% accuracy.(2) With the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy.This approach has demonstrated success of a clamp-on ultrasound sensor for flow regime classification and it would be possible in industry practice.It is considerably more promising than other techniques as it uses of non-invasive and nonradioactive sensor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
dfggg发布了新的文献求助100
4秒前
fcycukvujblk完成签到,获得积分10
4秒前
桔子发布了新的文献求助10
5秒前
emilybei发布了新的文献求助10
5秒前
6秒前
8秒前
睡不醒的xx完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
重要的静柏完成签到 ,获得积分10
9秒前
HH发布了新的文献求助10
10秒前
木子完成签到,获得积分10
12秒前
12秒前
12秒前
王雨晨完成签到 ,获得积分10
13秒前
13秒前
dfggg完成签到,获得积分10
15秒前
15秒前
15秒前
飘逸剑发布了新的文献求助10
16秒前
17秒前
可爱冰绿发布了新的文献求助10
18秒前
机灵雪曼完成签到 ,获得积分10
19秒前
活泼的白开水完成签到,获得积分10
20秒前
fyddsw发布了新的文献求助30
20秒前
Akim应助w。采纳,获得30
20秒前
善学以致用应助FYW采纳,获得10
20秒前
念姬发布了新的文献求助10
22秒前
22秒前
22秒前
人化自然完成签到 ,获得积分10
23秒前
NexusExplorer应助Munchr1采纳,获得10
24秒前
24秒前
nulinuli发布了新的文献求助10
26秒前
27秒前
田様应助老实难敌采纳,获得10
27秒前
28秒前
SciGPT应助liujie666采纳,获得10
29秒前
天天快乐应助liuttinn采纳,获得10
30秒前
思源应助飘逸剑采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598711
求助须知:如何正确求助?哪些是违规求助? 4684157
关于积分的说明 14833941
捐赠科研通 4664558
什么是DOI,文献DOI怎么找? 2537377
邀请新用户注册赠送积分活动 1504904
关于科研通互助平台的介绍 1470606