Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

超声波传感器 声学 多普勒效应 流量(数学) 两相流 材料科学 人工神经网络 相(物质) 机械 计算机科学 物理 人工智能 量子力学 天文
作者
Baba Musa Abbagoni,Hoi Yeung
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:27 (8): 084002-084002 被引量:69
标识
DOI:10.1088/0957-0233/27/8/084002
摘要

The identification of flow pattern is key issue in multiphase flow which encountered in the petrochemical industry.Gas-liquid two-phase flow is difficult to identify the gas-liquid flow regimes objectively.This paper presents a feasibility of a clamp-on instrument for objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and artificial neural network.It is on recording and processing of the ultrasonic signals reflected from the two-phase flow.Experimental data obtained on a horizontal test rig with total pipe length of 21 m long and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes.Multilayer Perceptron Neural Networks (MLPNNs) used for developing the classification model.The classifier requires features as input which is representative of the signals.Ultrasound signal features extracted by applying both power spectral density (PSD) and discrete wavelet transforms (DWT) methods to the flow signals.A classification scheme of "1-of-C coding method for classification" was adopted to classify features extracted into one of four flow regime categories.To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using output of a first level networks features as input features.Addition of the two network models provided a combined neural network models which has achieved higher accuracy than single neural network models.Classification accuracies evaluated in the form of both the PSD and DWT features.The success rates of the two models are: (1) using PSD features, the classifier missed three datasets out of 24 test datasets of the classification and scored 87.5% accuracy.(2) With the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy.This approach has demonstrated success of a clamp-on ultrasound sensor for flow regime classification and it would be possible in industry practice.It is considerably more promising than other techniques as it uses of non-invasive and nonradioactive sensor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
随时准备躺平完成签到,获得积分10
刚刚
活泼的磬发布了新的文献求助10
1秒前
充电宝应助xiaomili采纳,获得10
1秒前
Peng发布了新的文献求助10
5秒前
7秒前
斯文败类应助家伟采纳,获得10
7秒前
tongxiner发布了新的文献求助10
7秒前
bkagyin应助McbxM采纳,获得10
8秒前
巫马尔槐发布了新的文献求助10
9秒前
10秒前
10秒前
星辰大海应助Peng采纳,获得10
10秒前
Hello应助Peng采纳,获得10
10秒前
香蕉觅云应助Peng采纳,获得10
10秒前
12秒前
xiaomili发布了新的文献求助10
14秒前
共享精神应助陈小桥采纳,获得10
14秒前
14秒前
15秒前
15秒前
宋小威发布了新的文献求助10
15秒前
16秒前
桐桐应助Dphile采纳,获得10
16秒前
16秒前
LI发布了新的文献求助10
17秒前
不知名的小蜜蜂完成签到,获得积分20
18秒前
大力翠阳完成签到,获得积分10
19秒前
Jodie发布了新的文献求助10
19秒前
McbxM发布了新的文献求助10
19秒前
蜡笔小猪发布了新的文献求助10
20秒前
sunn发布了新的文献求助10
20秒前
家伟发布了新的文献求助10
21秒前
Akim应助几米杨采纳,获得10
21秒前
科研通AI2S应助nenoaowu采纳,获得10
22秒前
22秒前
LL完成签到,获得积分10
26秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502597
关于积分的说明 11109039
捐赠科研通 3233376
什么是DOI,文献DOI怎么找? 1787315
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122