Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

超声波传感器 声学 多普勒效应 流量(数学) 两相流 材料科学 人工神经网络 相(物质) 机械 计算机科学 物理 人工智能 天文 量子力学
作者
Baba Musa Abbagoni,Hoi Yeung
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:27 (8): 084002-084002 被引量:69
标识
DOI:10.1088/0957-0233/27/8/084002
摘要

The identification of flow pattern is key issue in multiphase flow which encountered in the petrochemical industry.Gas-liquid two-phase flow is difficult to identify the gas-liquid flow regimes objectively.This paper presents a feasibility of a clamp-on instrument for objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and artificial neural network.It is on recording and processing of the ultrasonic signals reflected from the two-phase flow.Experimental data obtained on a horizontal test rig with total pipe length of 21 m long and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes.Multilayer Perceptron Neural Networks (MLPNNs) used for developing the classification model.The classifier requires features as input which is representative of the signals.Ultrasound signal features extracted by applying both power spectral density (PSD) and discrete wavelet transforms (DWT) methods to the flow signals.A classification scheme of "1-of-C coding method for classification" was adopted to classify features extracted into one of four flow regime categories.To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using output of a first level networks features as input features.Addition of the two network models provided a combined neural network models which has achieved higher accuracy than single neural network models.Classification accuracies evaluated in the form of both the PSD and DWT features.The success rates of the two models are: (1) using PSD features, the classifier missed three datasets out of 24 test datasets of the classification and scored 87.5% accuracy.(2) With the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy.This approach has demonstrated success of a clamp-on ultrasound sensor for flow regime classification and it would be possible in industry practice.It is considerably more promising than other techniques as it uses of non-invasive and nonradioactive sensor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时尚夜南发布了新的文献求助10
刚刚
言兼发布了新的文献求助30
1秒前
llf完成签到,获得积分10
1秒前
科研小狗发布了新的文献求助10
2秒前
Augenstern发布了新的文献求助10
3秒前
莫三毒完成签到,获得积分10
4秒前
4秒前
轩轩发布了新的文献求助10
4秒前
糊糊完成签到,获得积分10
6秒前
搜集达人应助LOOW采纳,获得10
6秒前
7秒前
善良的导师完成签到,获得积分20
7秒前
亮liang完成签到,获得积分10
8秒前
wanci应助xiaoze采纳,获得10
8秒前
斯文的雪枫完成签到 ,获得积分10
8秒前
海森堡完成签到,获得积分10
8秒前
gogogo完成签到,获得积分10
10秒前
FashionBoy应助和谐的小凝采纳,获得10
11秒前
zyc1111111完成签到,获得积分10
11秒前
12秒前
gogogo发布了新的文献求助10
16秒前
我是站长才怪应助摆渡人采纳,获得10
17秒前
小雪发布了新的文献求助10
18秒前
复杂函完成签到,获得积分10
19秒前
19秒前
善良的导师关注了科研通微信公众号
19秒前
20秒前
晨曦完成签到,获得积分10
21秒前
xin完成签到,获得积分20
21秒前
dayulejia完成签到,获得积分10
21秒前
Owen应助枇杷采纳,获得10
22秒前
冷静惜灵发布了新的文献求助10
23秒前
煞笔导去死啊完成签到,获得积分20
23秒前
24秒前
言兼完成签到,获得积分10
25秒前
BareBear应助Zoe采纳,获得10
26秒前
上官若男应助摆渡人采纳,获得10
27秒前
小份红汤抄手完成签到,获得积分10
28秒前
29秒前
乐正乘风发布了新的文献求助10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313894
求助须知:如何正确求助?哪些是违规求助? 2946248
关于积分的说明 8529066
捐赠科研通 2621808
什么是DOI,文献DOI怎么找? 1434115
科研通“疑难数据库(出版商)”最低求助积分说明 665131
邀请新用户注册赠送积分活动 650738