亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

超声波传感器 声学 多普勒效应 流量(数学) 两相流 材料科学 人工神经网络 相(物质) 机械 计算机科学 物理 人工智能 量子力学 天文
作者
Baba Musa Abbagoni,Hoi Yeung
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:27 (8): 084002-084002 被引量:69
标识
DOI:10.1088/0957-0233/27/8/084002
摘要

The identification of flow pattern is key issue in multiphase flow which encountered in the petrochemical industry.Gas-liquid two-phase flow is difficult to identify the gas-liquid flow regimes objectively.This paper presents a feasibility of a clamp-on instrument for objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and artificial neural network.It is on recording and processing of the ultrasonic signals reflected from the two-phase flow.Experimental data obtained on a horizontal test rig with total pipe length of 21 m long and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes.Multilayer Perceptron Neural Networks (MLPNNs) used for developing the classification model.The classifier requires features as input which is representative of the signals.Ultrasound signal features extracted by applying both power spectral density (PSD) and discrete wavelet transforms (DWT) methods to the flow signals.A classification scheme of "1-of-C coding method for classification" was adopted to classify features extracted into one of four flow regime categories.To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using output of a first level networks features as input features.Addition of the two network models provided a combined neural network models which has achieved higher accuracy than single neural network models.Classification accuracies evaluated in the form of both the PSD and DWT features.The success rates of the two models are: (1) using PSD features, the classifier missed three datasets out of 24 test datasets of the classification and scored 87.5% accuracy.(2) With the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy.This approach has demonstrated success of a clamp-on ultrasound sensor for flow regime classification and it would be possible in industry practice.It is considerably more promising than other techniques as it uses of non-invasive and nonradioactive sensor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助猕猴桃采纳,获得10
3秒前
吾日三省吾身完成签到 ,获得积分10
3秒前
123完成签到 ,获得积分10
5秒前
晚星完成签到 ,获得积分10
8秒前
13秒前
等待若山完成签到,获得积分10
14秒前
敏感凝云完成签到 ,获得积分10
22秒前
xushangyuan发布了新的文献求助10
22秒前
27秒前
三水完成签到 ,获得积分10
27秒前
andrele完成签到,获得积分10
29秒前
所所应助科研通管家采纳,获得10
29秒前
Criminology34应助科研通管家采纳,获得10
29秒前
Criminology34应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
CipherSage应助科研通管家采纳,获得10
30秒前
30秒前
Owen应助科研通管家采纳,获得10
30秒前
共享精神应助科研通管家采纳,获得10
30秒前
32秒前
ivy发布了新的文献求助10
34秒前
槐序深巷完成签到 ,获得积分10
35秒前
andrele发布了新的文献求助10
37秒前
37秒前
顺利完成签到,获得积分10
38秒前
41秒前
找论文的潇完成签到,获得积分10
41秒前
42秒前
科研通AI6应助ivy采纳,获得10
43秒前
顺利发布了新的文献求助20
44秒前
子车茗应助边走边唱采纳,获得20
45秒前
手拿把掐吴完成签到 ,获得积分10
47秒前
xiaom发布了新的文献求助10
47秒前
47秒前
50秒前
小巧风华发布了新的文献求助10
51秒前
赘婿应助Li采纳,获得10
54秒前
Solkatt发布了新的文献求助20
58秒前
JamesPei应助小巧风华采纳,获得10
59秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548989
求助须知:如何正确求助?哪些是违规求助? 4634415
关于积分的说明 14634428
捐赠科研通 4575749
什么是DOI,文献DOI怎么找? 2509284
邀请新用户注册赠送积分活动 1485264
关于科研通互助平台的介绍 1456346