Removing artefacts from TMS-EEG recordings using independent component analysis: Importance for assessing prefrontal and motor cortex network properties

磁刺激 脑电图 独立成分分析 心理学 运动皮层 背外侧前额叶皮质 神经科学 大脑活动与冥想 听力学 前额叶皮质 刺激 计算机科学 人工智能 医学 认知
作者
Nigel C. Rogasch,Richard Hilton Siddall Thomson,Faranak Farzan,Bernadette M. Fitzgibbon,Neil W. Bailey,Julio C. Hernandez-Pavon,Zafiris J. Daskalakis,Paul B. Fitzgerald
出处
期刊:NeuroImage [Elsevier]
卷期号:101: 425-439 被引量:228
标识
DOI:10.1016/j.neuroimage.2014.07.037
摘要

The combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG) is emerging as a powerful tool for causally investigating cortical mechanisms and networks. However, various artefacts contaminate TMS-EEG recordings, particularly over regions such as the dorsolateral prefrontal cortex (DLPFC). The aim of this study was to substantiate removal of artefacts from TMS-EEG recordings following stimulation of the DLPFC and motor cortex using independent component analysis (ICA). 36 healthy volunteers (30.8 ± 9 years, 9 female) received 75 single TMS pulses to the left DLPFC or left motor cortex while EEG was recorded from 57 electrodes. A subset of 9 volunteers also received 50 sham pulses. The large TMS artefact and early muscle activity (− 2 to ~ 15 ms) were removed using interpolation and the remaining EEG signal was processed in two separate ICA runs using the FastICA algorithm. Five sub-types of TMS-related artefacts were manually identified: remaining muscle artefacts, decay artefacts, blink artefacts, auditory-evoked potentials and other noise-related artefacts. The cause of proposed blink and auditory-evoked potentials was assessed by concatenating known artefacts (i.e. voluntary blinks or auditory-evoked potentials resulting from sham TMS) to the TMS trials before ICA and evaluating grouping of resultant independent components (ICs). Finally, we assessed the effect of removing specific artefact types on TMS-evoked potentials (TEPs) and TMS-evoked oscillations. Over DLPFC, ICs from proposed muscle and decay artefacts correlated with TMS-evoked muscle activity size, whereas proposed TMS-evoked blink ICs combined with voluntary blinks and auditory ICs with auditory-evoked potentials from sham TMS. Individual artefact sub-types characteristically distorted each measure of DLPFC function across the scalp. When free of artefact, TEPs and TMS-evoked oscillations could be measured following DLPFC stimulation. Importantly, characteristic TEPs following motor cortex stimulation (N15, P30, N45, P60, N100) could be recovered from artefactual data, corroborating the reliability of ICA-based artefact correction. Various different artefacts contaminate TMS-EEG recordings over the DLPFC and motor cortex. However, these artefacts can be removed with apparent minimal impact on neural activity using ICA, allowing the study of TMS-evoked cortical network properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佐为完成签到 ,获得积分10
刚刚
wangke完成签到,获得积分10
1秒前
诚心采白完成签到,获得积分10
2秒前
美少叔叔完成签到 ,获得积分10
2秒前
小生不才完成签到 ,获得积分10
3秒前
ccy完成签到,获得积分10
3秒前
Owen应助张翼德采纳,获得10
3秒前
Jocelyn完成签到,获得积分10
4秒前
周舟完成签到 ,获得积分10
4秒前
土拨鼠完成签到 ,获得积分10
4秒前
丫丫完成签到,获得积分10
5秒前
励志梦完成签到,获得积分10
5秒前
灵巧的以亦完成签到,获得积分10
6秒前
bopbopbaby完成签到 ,获得积分10
6秒前
王王泽完成签到,获得积分20
6秒前
關不箸完成签到,获得积分10
6秒前
生生完成签到,获得积分10
6秒前
7秒前
7秒前
labordoc完成签到,获得积分10
9秒前
行走在科研的小路上完成签到,获得积分10
10秒前
Coatings完成签到,获得积分10
11秒前
13秒前
Notorious完成签到,获得积分10
13秒前
K3完成签到,获得积分10
14秒前
14秒前
Nirvana完成签到,获得积分10
15秒前
Karsen夏完成签到 ,获得积分10
15秒前
15秒前
霞霞12310发布了新的文献求助10
17秒前
单薄松鼠完成签到 ,获得积分10
18秒前
ytong完成签到,获得积分10
18秒前
18秒前
指哪打哪完成签到,获得积分10
18秒前
个性莺完成签到,获得积分10
18秒前
18秒前
神马都不懂完成签到,获得积分10
19秒前
zbx发布了新的文献求助10
20秒前
21秒前
快乐烧鹅发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555929
求助须知:如何正确求助?哪些是违规求助? 3131507
关于积分的说明 9391387
捐赠科研通 2831234
什么是DOI,文献DOI怎么找? 1556405
邀请新用户注册赠送积分活动 726554
科研通“疑难数据库(出版商)”最低求助积分说明 715890