Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries

电解质 锂(药物) 化学工程 纳米技术 材料科学 电极 化学 工程类 医学 物理化学 内分泌学
作者
Zhengyuan Tu,Pooja Nath,Yingying Lü,Mukul D. Tikekar,Lynden A. Archer
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:48 (11): 2947-2956 被引量:209
标识
DOI:10.1021/acs.accounts.5b00427
摘要

ConspectusSecondary batteries based on lithium are the most important energy storage technology for contemporary portable devices. The lithium ion battery (LIB) in widespread commercial use today is a compromise technology. It compromises high energy, high power, and design flexibility for long cell operating lifetimes and safety. Materials science, transport phenomena, and electrochemistry in the electrodes and electrolyte that constitute such batteries are areas of active study worldwide because significant improvements in storage capacity and cell lifetime are required to meet new demands, including the electrification of transportation and for powering emerging autonomous aircraft and robotics technologies. By replacing the carbonaceous host material used as the anode in an LIB with metallic lithium, rechargeable lithium metal batteries (LMBs) with higher storage capacity and compatibility with low-cost, high-energy, unlithiated cathodes such as sulfur, manganese dioxide, carbon dioxide, and oxygen become possible. Large-scale, commercial deployment of LMBs are today limited by safety concerns associated with unstable electrodeposition and lithium dendrite formation during cell recharge. LMBs are also limited by low cell operating lifetimes due to parasitic chemical reactions between the electrode and electrolyte. These concerns are greater in rechargeable batteries that utilize other, more earth abundant metals such as sodium and to some extent even aluminum.Inspired by early theoretical works, various strategies have been proposed for alleviating dendrite proliferation in LMBs. A commonly held view among these early studies is that a high modulus, solid-state electrolyte that facilitates fast ion transport, is nonflammable, and presents a strong-enough physical barrier to dendrite growth is a requirement for any commercial LMB. Unfortunately, poor room-temperature ionic conductivity, challenging processing, and the high cost of ceramic electrolytes that meet the modulus and stability requirements have to date proven to be insurmountable obstacles to progress. In this Account, we first review recent advances in continuum theory for dendrite growth and proliferation during metal electrodeposition. We show that the range of options for designing electrolytes and separators that stabilize electrodeposition is now substantially broader than one might imagine from previous literature accounts. In particular, separators designed at the nanoscale to constrain ion transport on length scales below a theory-defined cutoff, and structured electrolytes in which a fraction of anions are permanently immobilized to nanoparticles, to a polymer network or ceramic membrane are considered particularly promising for their ability to stabilize electrodeposition of lithium metal without compromising ionic conductivity or room temperature battery operation. We also review recent progress in designing surface passivation films for metallic lithium that facilitate fast deposition of lithium at the electrolyte/electrode interface and at the same time protect the lithium from parasitic side reactions with liquid electrolytes. A promising finding from both theory and experiment is that simple film-forming halide salt additives in a conventional liquid electrolyte can substantially extend the lifetime and safety of LMBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ghn123456789完成签到,获得积分10
刚刚
刚刚
一块巧克力完成签到,获得积分10
1秒前
bjx完成签到,获得积分20
1秒前
情怀应助根号派啊方采纳,获得10
2秒前
2秒前
赘婿应助enli采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI5应助jenny采纳,获得10
3秒前
活泼沛菡发布了新的文献求助10
4秒前
酷波er应助虚幻盼晴采纳,获得10
4秒前
zhhr发布了新的文献求助10
5秒前
5秒前
刻苦觅荷发布了新的文献求助10
5秒前
6秒前
比蓝色更深完成签到,获得积分10
6秒前
无辜不言发布了新的文献求助20
7秒前
感动芷卉完成签到 ,获得积分10
7秒前
7秒前
大根队长完成签到,获得积分10
8秒前
LOVE0077完成签到,获得积分10
8秒前
8秒前
dfghjkl完成签到 ,获得积分10
9秒前
evee完成签到 ,获得积分10
9秒前
Cyber_relic发布了新的文献求助10
9秒前
10秒前
肥鹏完成签到,获得积分10
10秒前
10秒前
帝蒼完成签到,获得积分10
11秒前
11秒前
汉堡包应助迷路迎南采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
Van关注了科研通微信公众号
13秒前
14秒前
14秒前
14秒前
研友_LJQ4o8完成签到,获得积分10
15秒前
15秒前
xiaosee给xiaosee的求助进行了留言
15秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771