Multiple exciton generation in nanocrystal quantum dots – controversy, current status and future prospects

多激子产生 激子 纳米晶 量子点 太阳能电池 纳米技术 材料科学 比克西顿 带隙 光电子学 能量转换效率 太阳能电池效率 物理 凝聚态物理
作者
David J. Binks
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
卷期号:13 (28): 12693-12693 被引量:73
标识
DOI:10.1039/c1cp20225a
摘要

Multiple exciton generation is a process that can occur in quantum dots by which the energy of an absorbed photon in excess of the bandgap can be used to create one or more additional excitons instead of being wasted as heat. This effect has received considerable interest because it has the potential to significantly enhance the performance of solar cells, nanocrystal lasers, high speed electronic devices and photocatalysts. However, measuring the efficiency of multiple exciton generation is experimentally challenging and the results of these measurements have been the subject of some controversy. This Perspective describes the techniques used to determine the quantum yield of multiexcitons in nanocrystals and also details the experimental artefacts that can confuse these measurements and have been the source of much of the recent debate. The greater understanding of these artefacts that has emerged recently and the experimental techniques developed to eliminate their effects on quantum yield measurements will also be described. The efficiency of multiple exciton generation currently obtainable from nanocrystals and its potential impact on solar cell performance is assessed in the light of this improved experimental understanding. Whilst it is found the quantum yields thus far reported are insufficient to result in more than a modest increase in solar cell efficiency, an analysis of the expected performance of a nanocrystal engineered to maximise multiple exciton generation indicates that a significant improvement in solar cell performance is possible. Moreover, a nanocrystal design is proposed for optimised efficiency of multiple exciton generation which would allow its potential benefit to solar power production to be realised.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Stanley发布了新的文献求助10
2秒前
李爱国应助虚心月饼采纳,获得10
2秒前
2秒前
3秒前
13771590815发布了新的文献求助10
5秒前
橙色小人完成签到,获得积分10
6秒前
8秒前
苗条梦玉发布了新的文献求助10
8秒前
luoshikun发布了新的文献求助10
10秒前
bkagyin应助MQRR采纳,获得30
10秒前
11秒前
西西完成签到,获得积分20
13秒前
Stanley完成签到,获得积分20
14秒前
今后应助苗条梦玉采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
zzlark完成签到,获得积分10
15秒前
爱吃冬瓜发布了新的文献求助20
16秒前
Awalong完成签到,获得积分10
19秒前
20秒前
ymj完成签到,获得积分10
26秒前
28秒前
wulalala完成签到,获得积分20
28秒前
28秒前
29秒前
sssyq完成签到,获得积分20
30秒前
彭于晏应助luoshikun采纳,获得10
31秒前
领导范儿应助啦啦啦采纳,获得10
32秒前
katarinabluu完成签到,获得积分10
33秒前
彭于晏应助leanne采纳,获得10
33秒前
我是老大应助明道若昧采纳,获得10
33秒前
sssyq发布了新的文献求助10
33秒前
着急的觅海完成签到,获得积分10
33秒前
34秒前
ylky发布了新的文献求助10
39秒前
科研通AI2S应助浮浮世世采纳,获得10
39秒前
传奇3应助华中科技大学采纳,获得10
39秒前
情怀应助WN采纳,获得10
40秒前
40秒前
43秒前
朴实山兰完成签到,获得积分10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173