已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiple exciton generation in nanocrystal quantum dots – controversy, current status and future prospects

多激子产生 激子 纳米晶 量子点 太阳能电池 纳米技术 材料科学 比克西顿 带隙 光电子学 能量转换效率 太阳能电池效率 物理 凝聚态物理
作者
David J. Binks
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:13 (28): 12693-12693 被引量:73
标识
DOI:10.1039/c1cp20225a
摘要

Multiple exciton generation is a process that can occur in quantum dots by which the energy of an absorbed photon in excess of the bandgap can be used to create one or more additional excitons instead of being wasted as heat. This effect has received considerable interest because it has the potential to significantly enhance the performance of solar cells, nanocrystal lasers, high speed electronic devices and photocatalysts. However, measuring the efficiency of multiple exciton generation is experimentally challenging and the results of these measurements have been the subject of some controversy. This Perspective describes the techniques used to determine the quantum yield of multiexcitons in nanocrystals and also details the experimental artefacts that can confuse these measurements and have been the source of much of the recent debate. The greater understanding of these artefacts that has emerged recently and the experimental techniques developed to eliminate their effects on quantum yield measurements will also be described. The efficiency of multiple exciton generation currently obtainable from nanocrystals and its potential impact on solar cell performance is assessed in the light of this improved experimental understanding. Whilst it is found the quantum yields thus far reported are insufficient to result in more than a modest increase in solar cell efficiency, an analysis of the expected performance of a nanocrystal engineered to maximise multiple exciton generation indicates that a significant improvement in solar cell performance is possible. Moreover, a nanocrystal design is proposed for optimised efficiency of multiple exciton generation which would allow its potential benefit to solar power production to be realised.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助zuo采纳,获得10
刚刚
刚刚
靓丽小蘑菇完成签到 ,获得积分10
1秒前
Diamond完成签到,获得积分10
1秒前
汤姆完成签到,获得积分10
2秒前
宋晴也发布了新的文献求助10
3秒前
伯爵完成签到 ,获得积分10
3秒前
pencil123完成签到,获得积分10
3秒前
wangmz发布了新的文献求助30
3秒前
飞飞飞fff完成签到 ,获得积分10
4秒前
阜睿完成签到 ,获得积分10
4秒前
wenlong完成签到 ,获得积分10
4秒前
脑洞疼应助Diamond采纳,获得10
5秒前
宋鹏炜发布了新的文献求助10
5秒前
王楚皓发布了新的文献求助10
6秒前
吴彦祖发布了新的文献求助10
7秒前
9秒前
搜集达人应助李昕123采纳,获得10
9秒前
如夏花发布了新的文献求助30
10秒前
uranus完成签到,获得积分10
10秒前
11秒前
宋鹏炜完成签到,获得积分20
11秒前
11秒前
科研通AI5应助peekaboo采纳,获得10
12秒前
上官若男应助爱听歌蜗牛采纳,获得10
13秒前
文艺猫咪完成签到,获得积分10
13秒前
小小飞xxf完成签到 ,获得积分10
15秒前
含蓄藏花完成签到,获得积分10
15秒前
牛牛牛刘完成签到,获得积分10
16秒前
背理完成签到,获得积分10
16秒前
含蓄藏花发布了新的文献求助10
17秒前
aliu完成签到,获得积分10
18秒前
落山姬完成签到,获得积分10
22秒前
tejing1158完成签到 ,获得积分10
23秒前
胖丁应助含蓄藏花采纳,获得10
24秒前
龟龟完成签到 ,获得积分10
24秒前
Lucas应助王楚皓采纳,获得10
25秒前
Hello应助Enthusiastic采纳,获得10
25秒前
宋晴也完成签到,获得积分10
25秒前
如夏花完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566475
求助须知:如何正确求助?哪些是违规求助? 3139182
关于积分的说明 9430981
捐赠科研通 2840041
什么是DOI,文献DOI怎么找? 1560936
邀请新用户注册赠送积分活动 730090
科研通“疑难数据库(出版商)”最低求助积分说明 717797