Multiple exciton generation in nanocrystal quantum dots – controversy, current status and future prospects

多激子产生 激子 纳米晶 量子点 太阳能电池 纳米技术 材料科学 比克西顿 带隙 光电子学 能量转换效率 太阳能电池效率 物理 凝聚态物理
作者
David J. Binks
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:13 (28): 12693-12693 被引量:73
标识
DOI:10.1039/c1cp20225a
摘要

Multiple exciton generation is a process that can occur in quantum dots by which the energy of an absorbed photon in excess of the bandgap can be used to create one or more additional excitons instead of being wasted as heat. This effect has received considerable interest because it has the potential to significantly enhance the performance of solar cells, nanocrystal lasers, high speed electronic devices and photocatalysts. However, measuring the efficiency of multiple exciton generation is experimentally challenging and the results of these measurements have been the subject of some controversy. This Perspective describes the techniques used to determine the quantum yield of multiexcitons in nanocrystals and also details the experimental artefacts that can confuse these measurements and have been the source of much of the recent debate. The greater understanding of these artefacts that has emerged recently and the experimental techniques developed to eliminate their effects on quantum yield measurements will also be described. The efficiency of multiple exciton generation currently obtainable from nanocrystals and its potential impact on solar cell performance is assessed in the light of this improved experimental understanding. Whilst it is found the quantum yields thus far reported are insufficient to result in more than a modest increase in solar cell efficiency, an analysis of the expected performance of a nanocrystal engineered to maximise multiple exciton generation indicates that a significant improvement in solar cell performance is possible. Moreover, a nanocrystal design is proposed for optimised efficiency of multiple exciton generation which would allow its potential benefit to solar power production to be realised.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
RayHey完成签到,获得积分0
刚刚
一斤欠半完成签到 ,获得积分10
1秒前
我是老大应助112采纳,获得10
1秒前
1秒前
子小发布了新的文献求助10
4秒前
聽你说发布了新的文献求助10
4秒前
Disguise完成签到,获得积分10
4秒前
clover112完成签到,获得积分10
4秒前
小胡同学完成签到,获得积分10
6秒前
小正发布了新的文献求助10
6秒前
leslie应助悬铃木采纳,获得10
6秒前
D-L@rabbit发布了新的文献求助10
6秒前
科研通AI6应助昭奚采纳,获得10
6秒前
留白完成签到,获得积分10
7秒前
酷炫甜瓜发布了新的文献求助10
8秒前
8秒前
ll关注了科研通微信公众号
9秒前
火焰迷踪完成签到,获得积分10
10秒前
英俊的铭应助小化采纳,获得10
10秒前
William完成签到,获得积分10
13秒前
留白发布了新的文献求助10
14秒前
14秒前
852应助舒心的初露采纳,获得10
14秒前
ddk发布了新的文献求助10
14秒前
铅笔完成签到,获得积分10
16秒前
Lucas应助undo采纳,获得10
16秒前
CipherSage应助Zaf采纳,获得10
17秒前
19秒前
20秒前
Miracle完成签到,获得积分10
23秒前
23秒前
hulian发布了新的文献求助10
26秒前
26秒前
姚哈哈发布了新的文献求助10
27秒前
LOVESWEET完成签到,获得积分10
29秒前
王WW完成签到,获得积分10
30秒前
morichoc完成签到 ,获得积分10
30秒前
orixero应助D-L@rabbit采纳,获得10
30秒前
黑皮金刚发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527