已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiple exciton generation in nanocrystal quantum dots – controversy, current status and future prospects

多激子产生 激子 纳米晶 量子点 太阳能电池 纳米技术 材料科学 比克西顿 带隙 光电子学 能量转换效率 太阳能电池效率 物理 凝聚态物理
作者
David J. Binks
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:13 (28): 12693-12693 被引量:73
标识
DOI:10.1039/c1cp20225a
摘要

Multiple exciton generation is a process that can occur in quantum dots by which the energy of an absorbed photon in excess of the bandgap can be used to create one or more additional excitons instead of being wasted as heat. This effect has received considerable interest because it has the potential to significantly enhance the performance of solar cells, nanocrystal lasers, high speed electronic devices and photocatalysts. However, measuring the efficiency of multiple exciton generation is experimentally challenging and the results of these measurements have been the subject of some controversy. This Perspective describes the techniques used to determine the quantum yield of multiexcitons in nanocrystals and also details the experimental artefacts that can confuse these measurements and have been the source of much of the recent debate. The greater understanding of these artefacts that has emerged recently and the experimental techniques developed to eliminate their effects on quantum yield measurements will also be described. The efficiency of multiple exciton generation currently obtainable from nanocrystals and its potential impact on solar cell performance is assessed in the light of this improved experimental understanding. Whilst it is found the quantum yields thus far reported are insufficient to result in more than a modest increase in solar cell efficiency, an analysis of the expected performance of a nanocrystal engineered to maximise multiple exciton generation indicates that a significant improvement in solar cell performance is possible. Moreover, a nanocrystal design is proposed for optimised efficiency of multiple exciton generation which would allow its potential benefit to solar power production to be realised.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助科研通管家采纳,获得30
刚刚
刚刚
上官若男应助科研通管家采纳,获得20
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
dawnfrf应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
xuz发布了新的文献求助10
1秒前
省级中药饮片完成签到 ,获得积分10
1秒前
朱云发布了新的文献求助10
2秒前
xuz发布了新的文献求助10
3秒前
xuz发布了新的文献求助10
4秒前
Ccccn完成签到,获得积分10
4秒前
4秒前
xuz发布了新的文献求助10
6秒前
xuz发布了新的文献求助10
6秒前
xuz发布了新的文献求助10
7秒前
隐形曼青应助聪明夏波采纳,获得10
8秒前
8秒前
8秒前
xuz发布了新的文献求助10
8秒前
福斯卡完成签到 ,获得积分10
9秒前
10秒前
Bien完成签到,获得积分10
10秒前
Peiyu发布了新的文献求助10
11秒前
我是老大应助lld采纳,获得10
12秒前
13秒前
xuz发布了新的文献求助10
13秒前
xuz发布了新的文献求助10
13秒前
13秒前
14秒前
未夕晴完成签到,获得积分10
17秒前
遇上就这样吧完成签到,获得积分0
17秒前
yang发布了新的文献求助10
17秒前
可可钳发布了新的文献求助10
18秒前
18秒前
wanwuzhumu发布了新的文献求助10
18秒前
556完成签到 ,获得积分10
19秒前
shaangu623完成签到,获得积分10
21秒前
堡主发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663955
求助须知:如何正确求助?哪些是违规求助? 4855706
关于积分的说明 15106735
捐赠科研通 4822347
什么是DOI,文献DOI怎么找? 2581405
邀请新用户注册赠送积分活动 1535549
关于科研通互助平台的介绍 1493834