已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and Validation of a Nomogram for Predicting Survival in Patients With Resected Non–Small-Cell Lung Cancer

列线图 医学 肿瘤科 肺癌 内科学 队列 一致性 TNM分期系统 癌症 癌症登记处 登台系统
作者
Wenhua Liang,Li Zhang,Gening Jiang,Qun Wang,Lunxu Liu,Deruo Liu,Zheng Wang,Zhihua Zhu,Qiuhua Deng,Xinguo Xiong,Wenlong Shao,Xiaoshun Shi,Jianxing He
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:33 (8): 861-869 被引量:683
标识
DOI:10.1200/jco.2014.56.6661
摘要

Purpose A nomogram is a useful and convenient tool for individualized cancer prognoses. We sought to develop a clinical nomogram for predicting survival of patients with resected non–small-cell lung cancer (NSCLC). Patients and Methods On the basis of data from a multi-institutional registry of 6,111 patients with resected NSCLC in China, we identified and integrated significant prognostic factors for survival to build a nomogram. The model was subjected to bootstrap internal validation and to external validation with a separate cohort of 2,148 patients from the International Association for the Study of Lung Cancer (IASLC) database. The predictive accuracy and discriminative ability were measured by concordance index (C-index) and risk group stratification. Results A total of 5,261 patients were included for analysis. Six independent prognostic factors were identified and entered into the nomogram. The calibration curves for probability of 1-, 3-, and 5-year overall survival (OS) showed optimal agreement between nomogram prediction and actual observation. The C-index of the nomogram was higher than that of the seventh edition American Joint Committee on Cancer TNM staging system for predicting OS (primary cohort, 0.71 v 0.68, respectively; P < .01; IASLC cohort, 0.67 v 0.64, respectively; P = .06). The stratification into different risk groups allowed significant distinction between survival curves within respective TNM categories. Conclusion We established and validated a novel nomogram that can provide individual prediction of OS for patients with resected NSCLC. This practical prognostic model may help clinicians in decision making and design of clinical studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
4秒前
無駄完成签到,获得积分10
6秒前
今后应助斯文奇迹采纳,获得10
6秒前
Kelly飞啊发布了新的文献求助80
7秒前
深情安青应助mosisa采纳,获得10
7秒前
9秒前
10秒前
Ww发布了新的文献求助10
12秒前
14秒前
xalone发布了新的文献求助10
15秒前
叙余完成签到 ,获得积分10
16秒前
斯文静竹完成签到,获得积分10
17秒前
舒心凡应助暮雨昨歇采纳,获得50
17秒前
今后应助李李05采纳,获得10
18秒前
TwentyNine完成签到 ,获得积分10
18秒前
19秒前
LS完成签到,获得积分10
24秒前
悍匪小保镖完成签到,获得积分10
29秒前
寻道图强应助文献猎手采纳,获得30
30秒前
31秒前
充电宝应助Harb采纳,获得10
32秒前
33秒前
孤灯剑客发布了新的文献求助10
35秒前
yznfly应助聪慧的紫菜采纳,获得20
36秒前
研友_LXOWx8发布了新的文献求助10
38秒前
虞美人完成签到 ,获得积分10
39秒前
無駄关注了科研通微信公众号
40秒前
濮阳伯云完成签到,获得积分10
41秒前
华仔应助孙晨维采纳,获得10
41秒前
43秒前
JamesPei应助胡说八道采纳,获得10
43秒前
聆听发布了新的文献求助10
43秒前
Lucas应助wdw2501采纳,获得10
44秒前
44秒前
小沐牧呀完成签到,获得积分10
44秒前
dd完成签到 ,获得积分10
45秒前
46秒前
何1完成签到 ,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663892
求助须知:如何正确求助?哪些是违规求助? 4854151
关于积分的说明 15106245
捐赠科研通 4822200
什么是DOI,文献DOI怎么找? 2581283
邀请新用户注册赠送积分活动 1535500
关于科研通互助平台的介绍 1493747