Traditional Chinese medicine clinical records classification with BERT and domain specific corpora

人工智能 预处理器 计算机科学 特征工程 深度学习 分类器(UML) 自然语言处理 中医药 F1得分 水准点(测量) 编码器 数据预处理 变压器 机器学习 模式识别(心理学) 医学 替代医学 大地测量学 病理 地理 操作系统 物理 量子力学 电压
作者
Liang Yao,Zhe Jin,Chengsheng Mao,Yin Zhang,Yuan Luo
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:26 (12): 1632-1636 被引量:69
标识
DOI:10.1093/jamia/ocz164
摘要

Abstract Traditional Chinese Medicine (TCM) has been developed for several thousand years and plays a significant role in health care for Chinese people. This paper studies the problem of classifying TCM clinical records into 5 main disease categories in TCM. We explored a number of state-of-the-art deep learning models and found that the recent Bidirectional Encoder Representations from Transformers can achieve better results than other deep learning models and other state-of-the-art methods. We further utilized an unlabeled clinical corpus to fine-tune the BERT language model before training the text classifier. The method only uses Chinese characters in clinical text as input without preprocessing or feature engineering. We evaluated deep learning models and traditional text classifiers on a benchmark data set. Our method achieves a state-of-the-art accuracy 89.39% ± 0.35%, Macro F1 score 88.64% ± 0.40% and Micro F1 score 89.39% ± 0.35%. We also visualized attention weights in our method, which can reveal indicative characters in clinical text.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拾一完成签到,获得积分10
刚刚
完美世界应助ayayaya采纳,获得10
1秒前
辛幼安完成签到,获得积分10
1秒前
1秒前
小蔡会有猫的完成签到,获得积分20
2秒前
2秒前
zhangdada发布了新的文献求助10
3秒前
3秒前
浊酒发布了新的文献求助30
4秒前
ferry123发布了新的文献求助10
4秒前
在水一方应助会飞的蛋挞采纳,获得10
5秒前
FAIRY完成签到,获得积分10
5秒前
大模型应助杨旭采纳,获得10
5秒前
可爱的函函应助Sun采纳,获得10
5秒前
5秒前
5秒前
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
6秒前
领导范儿应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
平贝花应助科研通管家采纳,获得10
7秒前
ISLAND完成签到,获得积分20
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得30
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
来日昭昭应助科研通管家采纳,获得10
7秒前
思源应助星星采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
Wind应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
wy.he应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
雪白飞槐完成签到,获得积分10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660897
求助须知:如何正确求助?哪些是违规求助? 4836059
关于积分的说明 15092345
捐赠科研通 4819501
什么是DOI,文献DOI怎么找? 2579320
邀请新用户注册赠送积分活动 1533794
关于科研通互助平台的介绍 1492586