Applying cascaded convolutional neural network design further enhances automatic scoring of arthritis disease activity on ultrasound images from rheumatoid arthritis patients

医学 威尔科克森符号秩检验 卷积神经网络 类风湿性关节炎 人工智能 试验装置 滑膜炎 人工神经网络 科恩卡帕 模式识别(心理学) 内科学 机器学习 计算机科学 曼惠特尼U检验
作者
Anders Bossel Holst Christensen,Søren Andreas Just,J. Andersen,Thiusius Rajeeth Savarimuthu
出处
期刊:Annals of the Rheumatic Diseases [BMJ]
卷期号:79 (9): 1189-1193 被引量:23
标识
DOI:10.1136/annrheumdis-2019-216636
摘要

We have previously shown that neural network technology can be used for scoring arthritis disease activity in ultrasound images from rheumatoid arthritis (RA) patients, giving scores according to the EULAR-OMERACT grading system. We have now further developed the architecture of this neural network and can here present a new idea applying cascaded convolutional neural network (CNN) design with even better results. We evaluate the generalisability of this method on unseen data, comparing the CNN with an expert rheumatologist.The images were graded by an expert rheumatologist according to the EULAR-OMERACT synovitis scoring system. CNNs were systematically trained to find the best configuration. The algorithms were evaluated on a separate test data set and compared with the gradings of an expert rheumatologist on a per-joint basis using a Kappa statistic, and on a per-patient basis using a Wilcoxon signed-rank test.With 1678 images available for training and 322 images for testing the model, it achieved an overall four-class accuracy of 83.9%. On a per-patient level, there was no significant difference between the classifications of the model and of a human expert (p=0.85). Our original CNN had a four-class accuracy of 75.0%.Using a new network architecture we have further enhanced the algorithm and have shown strong agreement with an expert rheumatologist on a per-joint basis and on a per-patient basis. This emphasises the potential of using CNNs with this architecture as a strong assistive tool for the objective assessment of disease activity of RA patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雷子完成签到,获得积分10
刚刚
BMH完成签到,获得积分10
刚刚
Owen应助xuejie采纳,获得20
1秒前
廿七发布了新的文献求助10
1秒前
高111完成签到,获得积分10
1秒前
赶紧sci发布了新的文献求助10
1秒前
Hello应助yyyy采纳,获得10
2秒前
香蕉觅云应助天天采纳,获得10
2秒前
phylicia发布了新的文献求助10
3秒前
3秒前
美丽梦秋完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
Owen应助一叶扁舟采纳,获得10
5秒前
SaturnY完成签到,获得积分10
5秒前
mhl11应助hq6045x采纳,获得10
5秒前
Orange应助Elian采纳,获得10
5秒前
jinwenqi发布了新的文献求助50
6秒前
隐形曼青应助想游泳的鹰采纳,获得10
6秒前
五斤老陈醋完成签到,获得积分10
7秒前
leon完成签到,获得积分10
8秒前
8秒前
梁静宇完成签到 ,获得积分10
9秒前
Owen应助2725293751采纳,获得10
9秒前
小巧的忆文完成签到,获得积分10
9秒前
Haoyun发布了新的文献求助10
10秒前
佳雪儿发布了新的文献求助10
10秒前
HJBF666完成签到 ,获得积分10
10秒前
廿七完成签到,获得积分10
10秒前
zms完成签到,获得积分10
10秒前
11秒前
zhenzhen发布了新的文献求助10
12秒前
眼睛大的电脑完成签到,获得积分10
13秒前
YQF完成签到,获得积分10
13秒前
十一月的阴天完成签到 ,获得积分10
13秒前
14秒前
LmaPN7发布了新的文献求助20
15秒前
jiabaoyu发布了新的文献求助10
15秒前
pcr163应助燚燚采纳,获得100
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308038
求助须知:如何正确求助?哪些是违规求助? 2941584
关于积分的说明 8504244
捐赠科研通 2616093
什么是DOI,文献DOI怎么找? 1429449
科研通“疑难数据库(出版商)”最低求助积分说明 663767
邀请新用户注册赠送积分活动 648712