Applying cascaded convolutional neural network design further enhances automatic scoring of arthritis disease activity on ultrasound images from rheumatoid arthritis patients

医学 威尔科克森符号秩检验 卷积神经网络 类风湿性关节炎 人工智能 试验装置 滑膜炎 人工神经网络 科恩卡帕 模式识别(心理学) 内科学 机器学习 计算机科学 曼惠特尼U检验
作者
Anders Bossel Holst Christensen,Søren Andreas Just,J. Andersen,Thiusius Rajeeth Savarimuthu
出处
期刊:Annals of the Rheumatic Diseases [BMJ]
卷期号:79 (9): 1189-1193 被引量:23
标识
DOI:10.1136/annrheumdis-2019-216636
摘要

We have previously shown that neural network technology can be used for scoring arthritis disease activity in ultrasound images from rheumatoid arthritis (RA) patients, giving scores according to the EULAR-OMERACT grading system. We have now further developed the architecture of this neural network and can here present a new idea applying cascaded convolutional neural network (CNN) design with even better results. We evaluate the generalisability of this method on unseen data, comparing the CNN with an expert rheumatologist.The images were graded by an expert rheumatologist according to the EULAR-OMERACT synovitis scoring system. CNNs were systematically trained to find the best configuration. The algorithms were evaluated on a separate test data set and compared with the gradings of an expert rheumatologist on a per-joint basis using a Kappa statistic, and on a per-patient basis using a Wilcoxon signed-rank test.With 1678 images available for training and 322 images for testing the model, it achieved an overall four-class accuracy of 83.9%. On a per-patient level, there was no significant difference between the classifications of the model and of a human expert (p=0.85). Our original CNN had a four-class accuracy of 75.0%.Using a new network architecture we have further enhanced the algorithm and have shown strong agreement with an expert rheumatologist on a per-joint basis and on a per-patient basis. This emphasises the potential of using CNNs with this architecture as a strong assistive tool for the objective assessment of disease activity of RA patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
Jiangzy完成签到,获得积分10
3秒前
4秒前
5秒前
砂糖发布了新的文献求助10
5秒前
落后世界完成签到,获得积分10
5秒前
所所应助Brightan采纳,获得10
6秒前
辇道增七完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
研友_enPaaZ完成签到 ,获得积分10
8秒前
默默地读文献应助sa采纳,获得10
9秒前
元竺发布了新的文献求助10
9秒前
疯狂的野狗完成签到,获得积分20
10秒前
ivVvyyy完成签到 ,获得积分10
11秒前
大模型应助阳光火车采纳,获得10
11秒前
陆鑫跃发布了新的文献求助10
11秒前
12秒前
赵一丁完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
光亮的店员完成签到,获得积分10
16秒前
Akaqqqi发布了新的文献求助10
18秒前
18秒前
执着的小刺猬完成签到,获得积分10
18秒前
19秒前
Dr.Jiang完成签到,获得积分10
20秒前
21秒前
李健应助wonwojo采纳,获得10
21秒前
知识四面八方来完成签到 ,获得积分10
21秒前
称心寒松发布了新的文献求助10
21秒前
每天都好困完成签到,获得积分20
21秒前
23秒前
24秒前
upward发布了新的文献求助10
25秒前
小懒完成签到,获得积分10
25秒前
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740956
求助须知:如何正确求助?哪些是违规求助? 3283797
关于积分的说明 10036810
捐赠科研通 3000526
什么是DOI,文献DOI怎么找? 1646584
邀请新用户注册赠送积分活动 783787
科研通“疑难数据库(出版商)”最低求助积分说明 750427