Graph Convolutional Autoencoder and Generative Adversarial Network-Based Method for Predicting Drug-Target Interactions

自编码 分类器(UML) 人工智能 计算机科学 特征向量 图形 特征学习 机器学习 生成对抗网络 药物靶点 模式识别(心理学) 特征(语言学) 深度学习 理论计算机科学 医学 语言学 哲学 药理学
作者
Chang Sun,Ping Xuan,Tiangang Zhang,Yilin Ye
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 455-464 被引量:46
标识
DOI:10.1109/tcbb.2020.2999084
摘要

The computational prediction of novel drug-target interactions (DTIs) may effectively speed up the process of drug repositioning and reduce its costs. Most previous methods integrated multiple kinds of connections about drugs and targets by constructing shallow prediction models. These methods failed to deeply learn the low-dimension feature vectors for drugs and targets and ignored the distribution of these feature vectors. We proposed a graph convolutional autoencoder and generative adversarial network (GAN)-based method, GANDTI, to predict DTIs. We constructed a drug-target heterogeneous network to integrate various connections related to drugs and targets, i.e., the similarities and interactions between drugs or between targets and the interactions between drugs and targets. A graph convolutional autoencoder was established to learn the network embeddings of the drug and target nodes in a low-dimensional feature space, and the autoencoder deeply integrated different kinds of connections within the network. A GAN was introduced to regularize the feature vectors of nodes into a Gaussian distribution. Severe class imbalance exists between known and unknown DTIs. Thus, we constructed a classifier based on an ensemble learning model, LightGBM, to estimate the interaction propensities of drugs and targets. This classifier completely exploited all unknown DTIs and counteracted the negative effect of class imbalance. The experimental results indicated that GANDTI outperforms several state-of-the-art methods for DTI prediction. Additionally, case studies of five drugs demonstrated the ability of GANDTI to discover the potential targets for drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助wade采纳,获得10
1秒前
上官若男应助诚心尔琴采纳,获得10
1秒前
cly3397完成签到,获得积分10
1秒前
1秒前
mm发布了新的文献求助10
2秒前
咯咚完成签到 ,获得积分10
2秒前
3秒前
3秒前
称心寒松发布了新的文献求助10
3秒前
mehplamnha完成签到,获得积分10
3秒前
感到蔚蓝发布了新的文献求助10
3秒前
kean1943完成签到,获得积分10
4秒前
欢呼妙菱发布了新的文献求助10
4秒前
Aileen完成签到,获得积分10
5秒前
64658应助兴奋海雪采纳,获得10
5秒前
领导范儿应助兴奋海雪采纳,获得10
5秒前
XSB完成签到,获得积分10
5秒前
个性梦蕊发布了新的文献求助10
5秒前
5秒前
Rencal发布了新的文献求助10
5秒前
随便取完成签到 ,获得积分10
5秒前
balabala发布了新的文献求助10
5秒前
6秒前
果冻信号完成签到,获得积分10
7秒前
还好发布了新的文献求助10
7秒前
7秒前
starkisses完成签到,获得积分10
7秒前
pp完成签到,获得积分10
8秒前
zhuan完成签到,获得积分10
8秒前
一行白鹭完成签到,获得积分20
8秒前
从容的宝马完成签到,获得积分10
9秒前
9秒前
称心寒松完成签到,获得积分10
10秒前
高梦祥发布了新的文献求助50
11秒前
还好完成签到,获得积分10
11秒前
11秒前
11秒前
眨眼完成签到,获得积分10
12秒前
从此刻开始关注了科研通微信公众号
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635