Graph Convolutional Autoencoder and Generative Adversarial Network-Based Method for Predicting Drug-Target Interactions

自编码 分类器(UML) 人工智能 计算机科学 特征向量 图形 特征学习 机器学习 生成对抗网络 药物靶点 模式识别(心理学) 特征(语言学) 深度学习 理论计算机科学 哲学 药理学 医学 语言学
作者
Chang Sun,Ping Xuan,Tiangang Zhang,Yilin Ye
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 455-464 被引量:40
标识
DOI:10.1109/tcbb.2020.2999084
摘要

The computational prediction of novel drug-target interactions (DTIs) may effectively speed up the process of drug repositioning and reduce its costs. Most previous methods integrated multiple kinds of connections about drugs and targets by constructing shallow prediction models. These methods failed to deeply learn the low-dimension feature vectors for drugs and targets and ignored the distribution of these feature vectors. We proposed a graph convolutional autoencoder and generative adversarial network (GAN)-based method, GANDTI, to predict DTIs. We constructed a drug-target heterogeneous network to integrate various connections related to drugs and targets, i.e., the similarities and interactions between drugs or between targets and the interactions between drugs and targets. A graph convolutional autoencoder was established to learn the network embeddings of the drug and target nodes in a low-dimensional feature space, and the autoencoder deeply integrated different kinds of connections within the network. A GAN was introduced to regularize the feature vectors of nodes into a Gaussian distribution. Severe class imbalance exists between known and unknown DTIs. Thus, we constructed a classifier based on an ensemble learning model, LightGBM, to estimate the interaction propensities of drugs and targets. This classifier completely exploited all unknown DTIs and counteracted the negative effect of class imbalance. The experimental results indicated that GANDTI outperforms several state-of-the-art methods for DTI prediction. Additionally, case studies of five drugs demonstrated the ability of GANDTI to discover the potential targets for drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由的小鸟完成签到,获得积分20
刚刚
科研通AI2S应助DLDL采纳,获得10
1秒前
1秒前
欢喜火车发布了新的文献求助10
1秒前
姜晓峰完成签到,获得积分20
1秒前
2秒前
jiejie发布了新的文献求助20
3秒前
今后应助发财达人采纳,获得10
3秒前
烟花应助Paper Maker采纳,获得10
3秒前
5秒前
张烤明完成签到,获得积分10
6秒前
小王子完成签到 ,获得积分20
7秒前
wuwuwu1wu发布了新的文献求助10
8秒前
mine完成签到,获得积分10
8秒前
8秒前
罗又柔应助醉熏的沛容采纳,获得10
9秒前
10秒前
小熊熊完成签到 ,获得积分10
11秒前
Joy发布了新的文献求助10
12秒前
700w完成签到 ,获得积分0
12秒前
圈圈发布了新的文献求助10
13秒前
fgh发布了新的文献求助10
13秒前
14秒前
芝麻汤圆完成签到,获得积分10
14秒前
15秒前
STDRM发布了新的文献求助10
16秒前
豆浆油条完成签到,获得积分10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
ShowMaker应助科研通管家采纳,获得10
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
无花果应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
11应助科研通管家采纳,获得20
18秒前
打打应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得30
18秒前
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145789
求助须知:如何正确求助?哪些是违规求助? 2797251
关于积分的说明 7823240
捐赠科研通 2453560
什么是DOI,文献DOI怎么找? 1305699
科研通“疑难数据库(出版商)”最低求助积分说明 627543
版权声明 601484