Artificial intelligence for retinopathy of prematurity

早产儿视网膜病变 人工智能 医学 概化理论 深度学习 人工智能应用 计算机科学 机器学习 数学 遗传学 生物 统计 胎龄 怀孕
作者
Rebekah H. Gensure,Michael F. Chiang,J. Peter Campbell
出处
期刊:Current Opinion in Ophthalmology [Ovid Technologies (Wolters Kluwer)]
卷期号:31 (5): 312-317 被引量:36
标识
DOI:10.1097/icu.0000000000000680
摘要

Purpose of review In this article, we review the current state of artificial intelligence applications in retinopathy of prematurity (ROP) and provide insight on challenges as well as strategies for bringing these algorithms to the bedside. Recent findings In the past few years, there has been a dramatic shift from machine learning approaches based on feature extraction to ‘deep’ convolutional neural networks for artificial intelligence applications. Several artificial intelligence for ROP approaches have demonstrated adequate proof-of-concept performance in research studies. The next steps are to determine whether these algorithms are robust to variable clinical and technical parameters in practice. Integration of artificial intelligence into ROP screening and treatment is limited by generalizability of the algorithms to maintain performance on unseen data and integration of artificial intelligence technology into new or existing clinical workflows. Summary Real-world implementation of artificial intelligence for ROP diagnosis will require massive efforts targeted at developing standards for data acquisition, true external validation, and demonstration of feasibility. We must now focus on ethical, technical, clinical, regulatory, and financial considerations to bring this technology to the infant bedside to realize the promise offered by this technology to reduce preventable blindness from ROP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
花凉发布了新的文献求助10
1秒前
文献小松鼠完成签到,获得积分10
1秒前
山真页完成签到,获得积分10
1秒前
科研通AI2S应助微雨初晴采纳,获得10
3秒前
3秒前
真知灼见发布了新的文献求助10
4秒前
4秒前
lulu发布了新的文献求助10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
linghanlan应助科研通管家采纳,获得20
4秒前
无餍应助科研通管家采纳,获得10
5秒前
so000应助科研通管家采纳,获得200
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
无餍应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
藤椒辣鱼应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Wsyyy完成签到 ,获得积分10
6秒前
上官若男应助zhu采纳,获得10
6秒前
小蘑菇应助路边一颗小草采纳,获得10
8秒前
YHY发布了新的文献求助10
8秒前
领导范儿应助宏韬采纳,获得10
8秒前
无边落木完成签到,获得积分10
9秒前
丘比特应助安陌煜采纳,获得30
9秒前
乐乐应助阳光怀亦采纳,获得10
10秒前
侃侃完成签到,获得积分10
10秒前
12秒前
12秒前
13秒前
科研通AI2S应助三金采纳,获得10
14秒前
小蘑菇应助谨慎的云朵采纳,获得10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644