弹性蛋白
细胞外基质
心脏瓣膜
组织工程
脐带
间充质干细胞
间质细胞
生物医学工程
细胞生物学
医学
病理
免疫学
生物
外科
作者
Neda Latifi,Monica Lecce,Craig A. Simmons
出处
期刊:Tissue Engineering Part C-methods
[Mary Ann Liebert]
日期:2021-01-01
卷期号:27 (1): 35-46
被引量:6
标识
DOI:10.1089/ten.tec.2020.0314
摘要
Many children born with congenital heart disease need a heart valve repair or replacement. Currently available repair materials and valve replacements are incapable of growth, repair, and adaptation, rendering them inadequate for growing children. Heart valve tissue engineering (HVTE) aims to develop living replacement valves that can meet these needs. Among numerous cell sources for in vitro HVTE, umbilical cord perivascular cells (UCPVCs) are particularly attractive because they are autologous, readily available, and have excellent regenerative capacity. As an essential step toward preclinical testing of heart valves engineered from UCPVCs, the goal of this study was to establish methods to isolate, expand, and promote extracellular matrix (ECM) synthesis by UCPVCs from pigs (porcine umbilical cord perivascular cells [pUCPVCs]), as a relevant preclinical model. We determined that Dulbecco's modified Eagle's medium with 20% fetal bovine serum supported isolation and substantial expansion of pUCPVCs, whereas media designed for human mesenchymal stromal cell (MSC) expansion did not. We further demonstrated the capacity of pUCPVCs to synthesize the main ECM components of heart valves (collagen type I, elastin, and glycosaminoglycans), with maximal collagen and elastin per-cell production occurring in serum-free culture conditions using StemMACS™ MSC Expansion Media. Altogether, these results establish protocols that enable the use of pUCPVCs as a viable cell source for preclinical testing of engineered heart valves. Impact statement This study establishes methods to successfully isolate, expand, and promote the synthesis of the main extracellular matrix components of heart valves (collagen type I, elastin, and glycosaminoglycans) by porcine umbilical cord perivascular cells (pUCPVCs). These protocols enable further evaluation of pUCPVCs as an autologous, readily available, and clinically relevant cell source for preclinical testing of pediatric tissue-engineered heart valves.
科研通智能强力驱动
Strongly Powered by AbleSci AI