Axillary lymph node metastasis status prediction of early-stage breast cancer using convolutional neural networks

卷积神经网络 分割 乳腺癌 人工智能 深度学习 阶段(地层学) 计算机科学 转移 模式识别(心理学) 人工神经网络 图像分割 癌症 淋巴结 腋窝淋巴结 乳腺肿瘤 医学 放射科 内科学 古生物学 生物
作者
Yan‐Wei Lee,Chiun‐Sheng Huang,Chung-Chih Shih,Ruey‐Feng Chang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:130: 104206-104206 被引量:55
标识
DOI:10.1016/j.compbiomed.2020.104206
摘要

Deep learning (DL) algorithms have been proven to be very effective in a wide range of computer vision applications, such as segmentation, classification, and detection. DL models can automatically assess complex medical image scenes without human intervention and can be applied as a second reader to provide an additional opinion for the physician. To predict the axillary lymph node (ALN) metastatic status in patients with early-stage breast cancer, a deep learning-based computer-aided prediction system for ultrasound (US) images was proposed. A total of 153 women with breast tumor US images were involved in this study; there were 59 patients with metastasis and 94 patients without ALN metastasis. A deep learning-based computer-aided prediction (CAP) system using the tumor region and peritumoral tissue in ultrasound (US) images were employed to determine the ALN status in breast cancer. First, we adopted Mask R–CNN as our tumor detection and segmentation model to obtain the tumor localization and region. Second, the peritumoral tissue was extracted from the US image, which reflects metastatic progression. Third, we used the DL model to predict ALN metastasis. Finally, the simple linear iterative clustering (SLIC) superpixel segmentation method and the LIME explanation algorithm were employed to explain how the model makes decisions. The experimental results indicated that the DL model had the best prediction performance on tumor regions with 3 mm thick peritumoral tissue, and the accuracy, sensitivity, specificity, and AUC were 81.05% (124/153), 81.36% (48/59), 80.85% (76/94), and 0.8054, respectively. The results indicated that the proposed CAP system could help determine the ALN status in patients with early-stage breast cancer. The results reveal that the proposed CAP model, which combines primary tumor and peritumoral tissue, is an effective method to predict the ALN status in patients with early-stage breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助迪迪子采纳,获得10
刚刚
刚刚
刚刚
多金完成签到,获得积分10
1秒前
默默完成签到,获得积分10
1秒前
77paocai完成签到,获得积分10
1秒前
刘宏发布了新的文献求助30
1秒前
追寻如雪完成签到 ,获得积分10
1秒前
付小佳发布了新的文献求助10
1秒前
2秒前
我是微风完成签到,获得积分10
2秒前
Yummy完成签到,获得积分10
3秒前
李爱国应助Serena采纳,获得10
3秒前
ning完成签到,获得积分10
3秒前
newman完成签到,获得积分10
3秒前
心澄宇静完成签到,获得积分10
4秒前
浮游应助xx采纳,获得10
4秒前
轻舞完成签到,获得积分10
4秒前
5秒前
Hupoo发布了新的文献求助10
5秒前
小志完成签到,获得积分10
5秒前
SSSYYY完成签到,获得积分10
6秒前
李健的小迷弟应助捞鱼采纳,获得10
6秒前
刘哔完成签到,获得积分10
6秒前
打打应助kk采纳,获得10
6秒前
6秒前
7秒前
7秒前
不吃橘子完成签到,获得积分10
7秒前
小超人完成签到 ,获得积分10
7秒前
8秒前
苹果白凡完成签到,获得积分10
8秒前
8秒前
亓钰完成签到,获得积分10
9秒前
奋斗长颈鹿完成签到,获得积分10
9秒前
舟舟完成签到,获得积分20
10秒前
gcx完成签到,获得积分10
10秒前
第二支羽毛完成签到,获得积分10
10秒前
霸王宝宝蛋完成签到,获得积分10
10秒前
Heheya发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402127
求助须知:如何正确求助?哪些是违规求助? 4520699
关于积分的说明 14081460
捐赠科研通 4434175
什么是DOI,文献DOI怎么找? 2434395
邀请新用户注册赠送积分活动 1426608
关于科研通互助平台的介绍 1405367