清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Axillary lymph node metastasis status prediction of early-stage breast cancer using convolutional neural networks

卷积神经网络 分割 乳腺癌 人工智能 深度学习 阶段(地层学) 计算机科学 转移 模式识别(心理学) 人工神经网络 图像分割 癌症 淋巴结 腋窝淋巴结 乳腺肿瘤 医学 放射科 内科学 古生物学 生物
作者
Yan‐Wei Lee,Chiun‐Sheng Huang,Chung-Chih Shih,Ruey‐Feng Chang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:130: 104206-104206 被引量:55
标识
DOI:10.1016/j.compbiomed.2020.104206
摘要

Deep learning (DL) algorithms have been proven to be very effective in a wide range of computer vision applications, such as segmentation, classification, and detection. DL models can automatically assess complex medical image scenes without human intervention and can be applied as a second reader to provide an additional opinion for the physician. To predict the axillary lymph node (ALN) metastatic status in patients with early-stage breast cancer, a deep learning-based computer-aided prediction system for ultrasound (US) images was proposed. A total of 153 women with breast tumor US images were involved in this study; there were 59 patients with metastasis and 94 patients without ALN metastasis. A deep learning-based computer-aided prediction (CAP) system using the tumor region and peritumoral tissue in ultrasound (US) images were employed to determine the ALN status in breast cancer. First, we adopted Mask R–CNN as our tumor detection and segmentation model to obtain the tumor localization and region. Second, the peritumoral tissue was extracted from the US image, which reflects metastatic progression. Third, we used the DL model to predict ALN metastasis. Finally, the simple linear iterative clustering (SLIC) superpixel segmentation method and the LIME explanation algorithm were employed to explain how the model makes decisions. The experimental results indicated that the DL model had the best prediction performance on tumor regions with 3 mm thick peritumoral tissue, and the accuracy, sensitivity, specificity, and AUC were 81.05% (124/153), 81.36% (48/59), 80.85% (76/94), and 0.8054, respectively. The results indicated that the proposed CAP system could help determine the ALN status in patients with early-stage breast cancer. The results reveal that the proposed CAP model, which combines primary tumor and peritumoral tissue, is an effective method to predict the ALN status in patients with early-stage breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yinyin完成签到 ,获得积分10
2秒前
tianshanfeihe完成签到 ,获得积分10
10秒前
13秒前
coolplex完成签到 ,获得积分10
14秒前
拜月教猪完成签到,获得积分10
15秒前
拜月教猪发布了新的文献求助10
18秒前
我是老大应助科研通管家采纳,获得10
27秒前
坚强的铅笔完成签到 ,获得积分10
40秒前
bookgg完成签到 ,获得积分10
46秒前
量子星尘发布了新的文献求助30
54秒前
1分钟前
陈好好完成签到 ,获得积分10
1分钟前
林药师完成签到,获得积分10
1分钟前
sailingluwl完成签到,获得积分10
1分钟前
Eri_SCI完成签到 ,获得积分10
1分钟前
尘染完成签到 ,获得积分10
1分钟前
DaYongDan完成签到 ,获得积分10
1分钟前
AOTUMAN完成签到,获得积分10
1分钟前
奋斗雅香完成签到 ,获得积分10
1分钟前
zsfxqq完成签到 ,获得积分10
2分钟前
领导范儿应助方俊驰采纳,获得10
2分钟前
charih完成签到 ,获得积分10
2分钟前
2分钟前
Akim应助cc采纳,获得10
2分钟前
方俊驰发布了新的文献求助10
2分钟前
nini完成签到,获得积分10
2分钟前
2分钟前
冬1完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
wayne完成签到 ,获得积分10
2分钟前
cc发布了新的文献求助10
2分钟前
苗条的一一完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
fjhsg25完成签到,获得积分20
3分钟前
个性仙人掌完成签到 ,获得积分10
3分钟前
孤独剑完成签到 ,获得积分10
3分钟前
celia完成签到 ,获得积分10
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015509
求助须知:如何正确求助?哪些是违规求助? 3555418
关于积分的说明 11318049
捐赠科研通 3288665
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812012