Axillary lymph node metastasis status prediction of early-stage breast cancer using convolutional neural networks

卷积神经网络 分割 乳腺癌 人工智能 深度学习 阶段(地层学) 计算机科学 转移 模式识别(心理学) 人工神经网络 图像分割 癌症 淋巴结 腋窝淋巴结 乳腺肿瘤 医学 放射科 内科学 古生物学 生物
作者
Yan‐Wei Lee,Chiun‐Sheng Huang,Chung-Chih Shih,Ruey‐Feng Chang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:130: 104206-104206 被引量:55
标识
DOI:10.1016/j.compbiomed.2020.104206
摘要

Deep learning (DL) algorithms have been proven to be very effective in a wide range of computer vision applications, such as segmentation, classification, and detection. DL models can automatically assess complex medical image scenes without human intervention and can be applied as a second reader to provide an additional opinion for the physician. To predict the axillary lymph node (ALN) metastatic status in patients with early-stage breast cancer, a deep learning-based computer-aided prediction system for ultrasound (US) images was proposed. A total of 153 women with breast tumor US images were involved in this study; there were 59 patients with metastasis and 94 patients without ALN metastasis. A deep learning-based computer-aided prediction (CAP) system using the tumor region and peritumoral tissue in ultrasound (US) images were employed to determine the ALN status in breast cancer. First, we adopted Mask R–CNN as our tumor detection and segmentation model to obtain the tumor localization and region. Second, the peritumoral tissue was extracted from the US image, which reflects metastatic progression. Third, we used the DL model to predict ALN metastasis. Finally, the simple linear iterative clustering (SLIC) superpixel segmentation method and the LIME explanation algorithm were employed to explain how the model makes decisions. The experimental results indicated that the DL model had the best prediction performance on tumor regions with 3 mm thick peritumoral tissue, and the accuracy, sensitivity, specificity, and AUC were 81.05% (124/153), 81.36% (48/59), 80.85% (76/94), and 0.8054, respectively. The results indicated that the proposed CAP system could help determine the ALN status in patients with early-stage breast cancer. The results reveal that the proposed CAP model, which combines primary tumor and peritumoral tissue, is an effective method to predict the ALN status in patients with early-stage breast cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安屿完成签到,获得积分10
刚刚
Xieyusen发布了新的文献求助10
刚刚
领导范儿应助Young_kristine采纳,获得10
刚刚
风清扬发布了新的文献求助10
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
无极微光应助东方元语采纳,获得20
4秒前
xxl完成签到 ,获得积分10
4秒前
5秒前
深情安青应助myy采纳,获得10
5秒前
5秒前
爆米花应助斯文绿凝采纳,获得30
6秒前
所所应助吴未采纳,获得10
8秒前
8秒前
8秒前
heweijiong完成签到,获得积分10
8秒前
开心黄蜂完成签到,获得积分20
9秒前
lzr发布了新的文献求助10
9秒前
c—137Morty发布了新的文献求助10
9秒前
10秒前
小易发布了新的文献求助10
11秒前
思源应助摇摇小屋采纳,获得10
11秒前
11秒前
yyy关闭了yyy文献求助
11秒前
科研通AI6应助xiaosu de baobao采纳,获得10
11秒前
12秒前
小熊局长完成签到,获得积分10
12秒前
Dxy-TOFA发布了新的文献求助10
12秒前
和谐冰菱完成签到,获得积分10
13秒前
小小发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
光头流浪记完成签到,获得积分10
14秒前
桐桐应助甜甜冰巧采纳,获得10
15秒前
CodeCraft应助cc采纳,获得10
15秒前
各方面发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649626
求助须知:如何正确求助?哪些是违规求助? 4778871
关于积分的说明 15049592
捐赠科研通 4808672
什么是DOI,文献DOI怎么找? 2571696
邀请新用户注册赠送积分活动 1528088
关于科研通互助平台的介绍 1486851