Axillary lymph node metastasis status prediction of early-stage breast cancer using convolutional neural networks

卷积神经网络 分割 乳腺癌 人工智能 深度学习 阶段(地层学) 计算机科学 转移 模式识别(心理学) 人工神经网络 图像分割 癌症 淋巴结 腋窝淋巴结 乳腺肿瘤 医学 放射科 内科学 古生物学 生物
作者
Yan‐Wei Lee,Chiun‐Sheng Huang,Chung-Chih Shih,Ruey‐Feng Chang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:130: 104206-104206 被引量:52
标识
DOI:10.1016/j.compbiomed.2020.104206
摘要

Deep learning (DL) algorithms have been proven to be very effective in a wide range of computer vision applications, such as segmentation, classification, and detection. DL models can automatically assess complex medical image scenes without human intervention and can be applied as a second reader to provide an additional opinion for the physician. To predict the axillary lymph node (ALN) metastatic status in patients with early-stage breast cancer, a deep learning-based computer-aided prediction system for ultrasound (US) images was proposed. A total of 153 women with breast tumor US images were involved in this study; there were 59 patients with metastasis and 94 patients without ALN metastasis. A deep learning-based computer-aided prediction (CAP) system using the tumor region and peritumoral tissue in ultrasound (US) images were employed to determine the ALN status in breast cancer. First, we adopted Mask R–CNN as our tumor detection and segmentation model to obtain the tumor localization and region. Second, the peritumoral tissue was extracted from the US image, which reflects metastatic progression. Third, we used the DL model to predict ALN metastasis. Finally, the simple linear iterative clustering (SLIC) superpixel segmentation method and the LIME explanation algorithm were employed to explain how the model makes decisions. The experimental results indicated that the DL model had the best prediction performance on tumor regions with 3 mm thick peritumoral tissue, and the accuracy, sensitivity, specificity, and AUC were 81.05% (124/153), 81.36% (48/59), 80.85% (76/94), and 0.8054, respectively. The results indicated that the proposed CAP system could help determine the ALN status in patients with early-stage breast cancer. The results reveal that the proposed CAP model, which combines primary tumor and peritumoral tissue, is an effective method to predict the ALN status in patients with early-stage breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
105完成签到 ,获得积分10
7秒前
matt完成签到,获得积分10
17秒前
研友Bn完成签到 ,获得积分10
21秒前
22秒前
fanzi完成签到 ,获得积分10
24秒前
淡淡的小蘑菇完成签到 ,获得积分10
28秒前
Skeletal完成签到,获得积分10
28秒前
卞卞完成签到,获得积分10
29秒前
无一完成签到 ,获得积分10
30秒前
泡泡奶芙完成签到 ,获得积分10
35秒前
keyan完成签到 ,获得积分10
35秒前
天天小女孩完成签到 ,获得积分10
36秒前
36秒前
Jenlisa完成签到 ,获得积分10
40秒前
用行舍藏完成签到,获得积分10
43秒前
Tianling完成签到,获得积分10
45秒前
vvvaee完成签到 ,获得积分10
45秒前
xcwy完成签到,获得积分10
51秒前
hua完成签到 ,获得积分10
59秒前
清风完成签到 ,获得积分10
1分钟前
Lenard Guma完成签到 ,获得积分10
1分钟前
霜序完成签到,获得积分10
1分钟前
xu发布了新的文献求助10
1分钟前
张光光完成签到 ,获得积分10
1分钟前
小庄完成签到 ,获得积分10
1分钟前
hwezhu完成签到,获得积分10
1分钟前
1分钟前
leungya完成签到,获得积分10
1分钟前
初心完成签到 ,获得积分10
1分钟前
失眠的蓝完成签到,获得积分10
1分钟前
科研迪发布了新的文献求助10
1分钟前
xu完成签到,获得积分10
1分钟前
xiying完成签到 ,获得积分10
1分钟前
Singularity举报三岁半求助涉嫌违规
1分钟前
斯文败类应助科研迪采纳,获得10
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139659
求助须知:如何正确求助?哪些是违规求助? 2790537
关于积分的说明 7795633
捐赠科研通 2446993
什么是DOI,文献DOI怎么找? 1301543
科研通“疑难数据库(出版商)”最低求助积分说明 626264
版权声明 601176