血管生成
微泡
细胞生物学
外体
成纤维细胞
小RNA
分泌物
细胞迁移
化学
内化
生物
细胞
细胞培养
癌症研究
生物化学
遗传学
基因
作者
Fei Xie,Guan-Nan Wen,Weidong Sun,Kewei Jiang,Ting Chen,Si Chen,Jie Wen
标识
DOI:10.1016/j.bbrc.2020.04.159
摘要
Mechanical stress can induce multiple functional changes in vascular endothelial cells, including proliferation, differentiation, and migration. Furthermore, human fibroblasts are susceptible to external mechanical stress. In this work, we investigated whether mechanical stress can induce exosome secretion from fibroblasts to modulate angiogenesis. A CCK-8 cell proliferation assay was used to determine mechanical parameters. Then, exosomes from fibroblasts were isolated and characterized with regard to concentration and markers. We subsequently explored the effect of exosomes on proliferation, migration, and angiogenesis. Additionally, high-throughput sequencing was used to screen differentially expressed miRNAs in the mechanical stress-induced exosomes. A static stretching of 15% significantly enhanced the cell viability of the fibroblasts (p < 0.05) and significantly induced the secretion of exosomes from the fibroblasts, which had a stronger internalization ability. Further experiments demonstrated that the presence of static stretching-induced exosomes significantly increased cell proliferation, migration, and angiogenesis by regulating the Erk1/2 signaling pathway. Additionally, 12 up-regulated and 12 down-regulated candidate miRNAs were discriminated in the static stretching-induced exosomes. Our findings conclusively demonstrate that static stretching-derived exosomes from fibroblasts promote angiogenesis through differentially expressed miRNAs, providing novel insights into the molecular mechanism by which mechanical stress influences angiogenesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI