Learning graph in graph convolutional neural networks for robust seizure prediction

计算机科学 卷积神经网络 发作性 图形 脑电图 人工智能 特征学习 癫痫 模式识别(心理学) 机器学习 理论计算机科学 神经科学 心理学
作者
Qi Lian,Yu Qi,Gang Pan,Yueming Wang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:17 (3): 035004-035004 被引量:35
标识
DOI:10.1088/1741-2552/ab909d
摘要

Objective. Brain-computer interface (BCI) has demonstrated its effectiveness in epilepsy treatment and control. In a BCI-aided epilepsy treatment system, therapic electrical stimulus is delivered in response to the prediction of upcoming seizure onsets, therefore timely and accurate seizure prediction algorithm plays an important role. However, unlike typical signatures such as slow or sharp waves in ictal periods, the signal patterns in preictal periods are usually subtle, and highly individual-dependent. How to extract effective and robust preictal features is still a challenging problem. Approach. Most recently, graph convolutional neural network (GCNN) has demonstrated the strength in the electroencephalogram (EEG) and intracranial electroencephalogram (iEEG) signal modeling, due to its advantages in describing complex relationships among different EEG/iEEG regions. However, current GCNN models are not suitable for seizure prediction. The effectiveness of GCNNs highly relies on prior graphs that describe the underlying relationships in EEG regions. However, due to the complex mechanism of seizure evolution, the underlying relationship in the preictal period can be diverse in different patients, making it almost impossible to build a proper prior graph in general. To deal with this problem, we propose a novel approach to automatically learn a patient-specific graph in a data-driven way, which is called the joint graph structure and representation learning network (JGRN). JGRN constructs a global-local graph convolutional neural network which jointly learns the graph structures and connection weights in a task-related learning process in iEEG signals, thus the learned graph and feature representations can be optimized toward the objective of seizure prediction. Main results. Experimental results show that our JGRN outperforms CNN and GCNN models remarkably, and the improvement is more obvious when preictal features are subtle. Significance. The proposed approach promises to achieve robust seizure prediction performance and to have the potential to be extended to general problems in brain-computer interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐正颦发布了新的文献求助10
刚刚
1秒前
weiwei发布了新的文献求助10
4秒前
czxhhd应助Chuwei采纳,获得10
7秒前
情怀应助婉晴采纳,获得10
8秒前
10秒前
天天快乐应助77在七月采纳,获得10
11秒前
Rothchile发布了新的文献求助10
14秒前
15秒前
还是琦琦琦吖完成签到,获得积分10
15秒前
17秒前
19秒前
20秒前
小遇完成签到 ,获得积分10
21秒前
22秒前
22秒前
WQ发布了新的文献求助10
22秒前
23秒前
qi发布了新的文献求助10
25秒前
25秒前
26秒前
纯情的心情完成签到,获得积分20
28秒前
打打应助张黔粤zz采纳,获得30
29秒前
星辰大海应助WQ采纳,获得10
29秒前
31秒前
31秒前
zsz2016发布了新的文献求助10
31秒前
法外狂徒发布了新的文献求助100
34秒前
AEFGGS完成签到,获得积分10
36秒前
37秒前
37秒前
38秒前
小洋甘完成签到,获得积分10
40秒前
dhh发布了新的文献求助10
41秒前
好大一只小坏蛋完成签到,获得积分10
41秒前
万里发布了新的文献求助10
41秒前
43秒前
华莉变身发布了新的文献求助10
47秒前
高贵的水杯完成签到,获得积分10
48秒前
徐小发布了新的文献求助200
48秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3704536
求助须知:如何正确求助?哪些是违规求助? 3254150
关于积分的说明 9887388
捐赠科研通 2965912
什么是DOI,文献DOI怎么找? 1626606
邀请新用户注册赠送积分活动 770987
科研通“疑难数据库(出版商)”最低求助积分说明 743109