Optimizing Survival Analysis of XGBoost for Ties to Predict Disease Progression of Breast Cancer

乳腺癌 生存分析 疾病 肿瘤科 内科学 癌症 医学
作者
Pei Liu,Bo Fu,Simon X. Yang,Ling Deng,Xiaorong Zhong,Hong Zheng
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:68 (1): 148-160 被引量:96
标识
DOI:10.1109/tbme.2020.2993278
摘要

Some excellent prognostic models based on survival analysis methods for breast cancer have been proposed and extensively validated, which provide an essential means for clinical diagnosis and treatment to improve patient survival. To analyze clinical and follow-up data of 12119 breast cancer patients, derived from the Clinical Research Center for Breast (CRCB) in West China Hospital of Sichuan University, we developed a gradient boosting algorithm, called EXSA, by optimizing survival analysis of XGBoost framework for ties to predict the disease progression of breast cancer.EXSA is based on the XGBoost framework in machine learning and the Cox proportional hazards model in survival analysis. By taking Efron approximation of partial likelihood function as a learning objective for ties, EXSA derives gradient formulas of a more precise approximation. It optimizes and enhances the ability of XGBoost for survival data with ties. After retaining 4575 patients (3202 cases for training, 1373 cases for test), we exploit the developed EXSA method to build an excellent prognostic model to estimate disease progress. Risk score of disease progress is evaluated by the model, and the risk grouping and continuous functions between risk scores and disease progress rate at 5- and 10-year are also demonstrated.Experimental results on test set show that the EXSA method achieves competitive performance with concordance index of 0.83454, 5-year and 10-year AUC of 0.83851 and 0.78155, respectively.The proposed EXSA method can be utilized as an effective method for survival analysis.The proposed method in this paper can provide an important means for follow-up data of breast cancer or other disease research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默善愁发布了新的文献求助10
刚刚
perfect7完成签到,获得积分10
1秒前
4秒前
落阳发布了新的文献求助10
4秒前
5秒前
5秒前
2333完成签到,获得积分10
5秒前
wmx完成签到,获得积分10
6秒前
cxhm发布了新的文献求助10
6秒前
饼饼发布了新的文献求助10
6秒前
6秒前
6秒前
pretty_wy给pretty_wy的求助进行了留言
8秒前
dzc发布了新的文献求助30
8秒前
8秒前
8秒前
wmx发布了新的文献求助10
9秒前
10秒前
眼睛大枫发布了新的文献求助10
10秒前
虚心板凳发布了新的文献求助30
11秒前
科目三应助禹冷玉采纳,获得10
11秒前
huanhuan发布了新的文献求助10
11秒前
库里发布了新的文献求助10
12秒前
阿木木发布了新的文献求助10
12秒前
三分发布了新的文献求助10
13秒前
13秒前
丫头完成签到 ,获得积分10
13秒前
酷波er应助小小小采纳,获得10
13秒前
强健的秋发布了新的文献求助10
14秒前
人间枝头发布了新的文献求助10
14秒前
15秒前
谢大喵发布了新的文献求助10
15秒前
淡淡天宇完成签到,获得积分10
16秒前
FashionBoy应助心灵美的虔纹采纳,获得10
17秒前
善学以致用应助三分采纳,获得10
17秒前
一碗鱼发布了新的文献求助10
17秒前
Vicky发布了新的文献求助10
18秒前
Blue发布了新的文献求助10
20秒前
huanhuan完成签到,获得积分20
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Adult Development and Aging, 2nd Canadian Edition 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5567503
求助须知:如何正确求助?哪些是违规求助? 4652181
关于积分的说明 14699514
捐赠科研通 4593964
什么是DOI,文献DOI怎么找? 2520562
邀请新用户注册赠送积分活动 1492651
关于科研通互助平台的介绍 1463609