Optimizing Survival Analysis of XGBoost for Ties to Predict Disease Progression of Breast Cancer

乳腺癌 生存分析 疾病 肿瘤科 内科学 癌症 医学
作者
Pei Liu,Bo Fu,Simon X. Yang,Ling Deng,Xiaorong Zhong,Hong Zheng
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:68 (1): 148-160 被引量:96
标识
DOI:10.1109/tbme.2020.2993278
摘要

Some excellent prognostic models based on survival analysis methods for breast cancer have been proposed and extensively validated, which provide an essential means for clinical diagnosis and treatment to improve patient survival. To analyze clinical and follow-up data of 12119 breast cancer patients, derived from the Clinical Research Center for Breast (CRCB) in West China Hospital of Sichuan University, we developed a gradient boosting algorithm, called EXSA, by optimizing survival analysis of XGBoost framework for ties to predict the disease progression of breast cancer.EXSA is based on the XGBoost framework in machine learning and the Cox proportional hazards model in survival analysis. By taking Efron approximation of partial likelihood function as a learning objective for ties, EXSA derives gradient formulas of a more precise approximation. It optimizes and enhances the ability of XGBoost for survival data with ties. After retaining 4575 patients (3202 cases for training, 1373 cases for test), we exploit the developed EXSA method to build an excellent prognostic model to estimate disease progress. Risk score of disease progress is evaluated by the model, and the risk grouping and continuous functions between risk scores and disease progress rate at 5- and 10-year are also demonstrated.Experimental results on test set show that the EXSA method achieves competitive performance with concordance index of 0.83454, 5-year and 10-year AUC of 0.83851 and 0.78155, respectively.The proposed EXSA method can be utilized as an effective method for survival analysis.The proposed method in this paper can provide an important means for follow-up data of breast cancer or other disease research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫捡球完成签到,获得积分10
1秒前
1秒前
酷波er应助开心市民小刘采纳,获得10
1秒前
2秒前
起床了吗发布了新的文献求助10
2秒前
Jasper应助潇洒的白昼采纳,获得10
2秒前
2秒前
小面包发布了新的文献求助10
2秒前
从容甜瓜完成签到,获得积分10
5秒前
年少丶发布了新的文献求助20
5秒前
幸福大白发布了新的文献求助10
6秒前
6秒前
6秒前
香蕉觅云应助白方明采纳,获得10
6秒前
慕青应助yolo采纳,获得10
7秒前
伊凡发布了新的文献求助10
7秒前
复方黄桃干完成签到,获得积分10
7秒前
7秒前
年轻新儿完成签到,获得积分10
7秒前
少年与梦发布了新的文献求助10
7秒前
8秒前
xiaosi完成签到 ,获得积分10
8秒前
9秒前
9秒前
领导范儿应助忧心的寄松采纳,获得10
10秒前
GEYUAN发布了新的文献求助10
11秒前
科研通AI5应助友好似狮采纳,获得10
12秒前
yufei发布了新的文献求助10
12秒前
12秒前
12秒前
璃月稻妻发布了新的文献求助10
13秒前
13秒前
lhy12345完成签到,获得积分10
13秒前
从容飞凤发布了新的文献求助10
14秒前
科研通AI5应助快乐的心情采纳,获得30
14秒前
晨初发布了新的文献求助10
14秒前
ning完成签到,获得积分20
14秒前
阳光的羊完成签到,获得积分10
15秒前
robinhood完成签到,获得积分10
15秒前
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483504
求助须知:如何正确求助?哪些是违规求助? 3072815
关于积分的说明 9128148
捐赠科研通 2764341
什么是DOI,文献DOI怎么找? 1517190
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797