The Crystal Structures of Thermomyces (Humicola) Lanuginosa Lipase in Complex with Enzymatic Reactants

化学 单斜晶系 脂肪酶 正交晶系 分子 Crystal(编程语言) 活动站点 立体化学 结晶学 晶体结构 有机化学 计算机科学 程序设计语言
作者
Alexander McPherson,Steven B. Larson,Andrew Kalasky
出处
期刊:Current Enzyme Inhibition [Bentham Science Publishers]
卷期号:16 (3): 199-213 被引量:6
标识
DOI:10.2174/1573408016999200511090910
摘要

Aim: To understand the details of the action of fungal lipase and the mechanism for its observed interfacial activation. Background: Fungal lipase, crucial to biotechnology, functions at the lipid - water interface where it undergoes a poorly understood interfacial activation. Biochemical factors influencing its activation and inhibition are also poorly understood. This study provides a basis for its activity and a plausible mechanism for interfacial activation. Objective: To determine the structures of fungal lipase in different crystal forms in complex with their enzymatic reactants and inhibitors. Method: X-ray crystallography. Results: Thermomyces lanuginosa lipase was visualized in three crystal forms, of space groups H32, P21 and I222 at 1.3 to 1.45 Å resolution. Rhombohedral crystals have one molecule, lacking segment 241 to 252, as an asymmetric unit, with molecules organized as two trimers. Monoclinic crystals’ asymmetric unit is six intact molecules organized as two, nearly identical trimers, each exhibiting an NCS threefold axis. The “lid” helix was consistently closed. Oligomerization into trimers creates an internal hydrophobic cavity where catalysis occurs. In monoclinic and orthorhombic crystals, active site serines were esterified to fatty acids. Lipase had bound within their trimeric, hydrophobic cavities 1,3-diacylglycerols with fatty acid chain lengths of about 18 carbons. Conclusions: Results suggest trimers are likely the active form of the enzyme at the lipid-water interface. Formation of trimers may provide an explanation for “interfacial activation”.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI5应助外向如冬采纳,获得30
1秒前
科研民工完成签到,获得积分10
1秒前
wx发布了新的文献求助10
1秒前
刘青铜发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
Estrella完成签到,获得积分10
2秒前
2秒前
Yi完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
酷酷的me完成签到,获得积分10
5秒前
5秒前
无花果应助高大亦寒采纳,获得10
5秒前
5秒前
大地完成签到,获得积分10
5秒前
敏感初露完成签到,获得积分10
6秒前
6秒前
6秒前
动漫大师发布了新的文献求助10
6秒前
乐乐应助执着迎波采纳,获得10
6秒前
ma完成签到 ,获得积分10
6秒前
tooslow发布了新的文献求助30
7秒前
科研通AI2S应助zaadasd采纳,获得10
7秒前
8秒前
震动的念文完成签到,获得积分10
9秒前
towerman完成签到,获得积分10
9秒前
动漫大师发布了新的文献求助30
9秒前
9秒前
10秒前
wanci应助lx1199采纳,获得10
10秒前
10秒前
10秒前
10秒前
彭静琳完成签到 ,获得积分10
10秒前
小白应助Estrella采纳,获得50
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
连铸钢板坯低倍组织缺陷评级图 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700684
求助须知:如何正确求助?哪些是违规求助? 3250982
关于积分的说明 9872314
捐赠科研通 2963008
什么是DOI,文献DOI怎么找? 1624918
邀请新用户注册赠送积分活动 769618
科研通“疑难数据库(出版商)”最低求助积分说明 742403