Computational planning of the synthesis of complex natural products

自然(考古学) 计算机科学 化学 生化工程 生物 工程类 古生物学
作者
Barbara Mikulak-Klucznik,Patrycja Gołębiowska,Alison A. Bayly,Oskar Popik,Tomasz Klucznik,Sara Szymkuć,Ewa Gajewska,Piotr Dittwald,Olga Staszewska‐Krajewska,Wiktor Beker,Tomasz Badowski,Karl A. Scheidt,Karol Molga,Jacek Młynarski,Milan Mrksich,Bartosz A. Grzybowski
出处
期刊:Nature [Nature Portfolio]
卷期号:588 (7836): 83-88 被引量:205
标识
DOI:10.1038/s41586-020-2855-y
摘要

Training algorithms to computationally plan multistep organic syntheses has been a challenge for more than 50 years1-7. However, the field has progressed greatly since the development of early programs such as LHASA1,7, for which reaction choices at each step were made by human operators. Multiple software platforms6,8-14 are now capable of completely autonomous planning. But these programs 'think' only one step at a time and have so far been limited to relatively simple targets, the syntheses of which could arguably be designed by human chemists within minutes, without the help of a computer. Furthermore, no algorithm has yet been able to design plausible routes to complex natural products, for which much more far-sighted, multistep planning is necessary15,16 and closely related literature precedents cannot be relied on. Here we demonstrate that such computational synthesis planning is possible, provided that the program's knowledge of organic chemistry and data-based artificial intelligence routines are augmented with causal relationships17,18, allowing it to 'strategize' over multiple synthetic steps. Using a Turing-like test administered to synthesis experts, we show that the routes designed by such a program are largely indistinguishable from those designed by humans. We also successfully validated three computer-designed syntheses of natural products in the laboratory. Taken together, these results indicate that expert-level automated synthetic planning is feasible, pending continued improvements to the reaction knowledge base and further code optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero应助七曜采纳,获得10
1秒前
水煮牛牛完成签到,获得积分10
1秒前
1秒前
han完成签到,获得积分10
1秒前
2秒前
3秒前
11发布了新的文献求助10
4秒前
小二郎应助Tt采纳,获得10
4秒前
5秒前
hxx完成签到,获得积分10
6秒前
棉花糖发布了新的文献求助10
6秒前
syl完成签到,获得积分10
6秒前
xxx发布了新的文献求助10
7秒前
8秒前
10秒前
14秒前
15秒前
漂漂亮亮大番薯完成签到,获得积分10
16秒前
VDoo完成签到 ,获得积分10
18秒前
NSJN2022发布了新的文献求助10
19秒前
思源应助香蕉孤风采纳,获得10
20秒前
安静曼寒发布了新的文献求助10
20秒前
研友_nqv2WZ发布了新的文献求助200
20秒前
Ava应助狸宝的小果子采纳,获得10
22秒前
小二郎应助逸兴遄飞采纳,获得30
25秒前
26秒前
默蟹完成签到 ,获得积分10
27秒前
愉快太清发布了新的文献求助10
28秒前
29秒前
安静曼寒完成签到,获得积分20
31秒前
包凡之发布了新的文献求助10
31秒前
顾矜应助Atropa采纳,获得10
33秒前
Hello应助困困困死了采纳,获得10
33秒前
33秒前
寂寞的寄松应助好运来采纳,获得10
34秒前
香蕉孤风完成签到 ,获得积分10
35秒前
hubanj完成签到,获得积分10
37秒前
芭娜55完成签到 ,获得积分10
39秒前
boshazhiwu完成签到 ,获得积分10
40秒前
乐乐应助邢文瑞采纳,获得10
45秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962851
求助须知:如何正确求助?哪些是违规求助? 3508777
关于积分的说明 11143063
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791638
邀请新用户注册赠送积分活动 873002
科研通“疑难数据库(出版商)”最低求助积分说明 803577