亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computational planning of the synthesis of complex natural products

自然(考古学) 计算机科学 化学 生化工程 生物 工程类 古生物学
作者
Barbara Mikulak-Klucznik,Patrycja Gołębiowska,Alison A. Bayly,Oskar Popik,Tomasz Klucznik,Sara Szymkuć,Ewa Gajewska,Piotr Dittwald,Olga Staszewska‐Krajewska,Wiktor Beker,Tomasz Badowski,Karl A. Scheidt,Karol Molga,Jacek Młynarski,Milan Mrksich,Bartosz A. Grzybowski
出处
期刊:Nature [Nature Portfolio]
卷期号:588 (7836): 83-88 被引量:231
标识
DOI:10.1038/s41586-020-2855-y
摘要

Training algorithms to computationally plan multistep organic syntheses has been a challenge for more than 50 years1-7. However, the field has progressed greatly since the development of early programs such as LHASA1,7, for which reaction choices at each step were made by human operators. Multiple software platforms6,8-14 are now capable of completely autonomous planning. But these programs 'think' only one step at a time and have so far been limited to relatively simple targets, the syntheses of which could arguably be designed by human chemists within minutes, without the help of a computer. Furthermore, no algorithm has yet been able to design plausible routes to complex natural products, for which much more far-sighted, multistep planning is necessary15,16 and closely related literature precedents cannot be relied on. Here we demonstrate that such computational synthesis planning is possible, provided that the program's knowledge of organic chemistry and data-based artificial intelligence routines are augmented with causal relationships17,18, allowing it to 'strategize' over multiple synthetic steps. Using a Turing-like test administered to synthesis experts, we show that the routes designed by such a program are largely indistinguishable from those designed by humans. We also successfully validated three computer-designed syntheses of natural products in the laboratory. Taken together, these results indicate that expert-level automated synthetic planning is feasible, pending continued improvements to the reaction knowledge base and further code optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lll发布了新的文献求助10
5秒前
lll完成签到,获得积分10
14秒前
GPTea应助科研通管家采纳,获得10
36秒前
SciGPT应助科研通管家采纳,获得10
36秒前
英俊的铭应助科研通管家采纳,获得50
36秒前
韶绍完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
GPTea应助科研通管家采纳,获得10
2分钟前
GPTea应助科研通管家采纳,获得10
2分钟前
月军完成签到,获得积分10
2分钟前
木木杉完成签到 ,获得积分10
2分钟前
123完成签到,获得积分10
4分钟前
4分钟前
561发布了新的文献求助10
4分钟前
GPTea应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
英俊的铭应助561采纳,获得30
4分钟前
温茶完成签到,获得积分20
4分钟前
5分钟前
5分钟前
dynamoo举报你可以帮我嘛求助涉嫌违规
5分钟前
dao发布了新的文献求助10
5分钟前
卢卢家兴发布了新的文献求助50
5分钟前
TTRRCEB发布了新的文献求助10
6分钟前
GPTea应助科研通管家采纳,获得10
6分钟前
不信人间有白头完成签到 ,获得积分10
6分钟前
共享精神应助TTRRCEB采纳,获得10
7分钟前
7分钟前
排骨大王完成签到,获得积分10
8分钟前
8分钟前
8分钟前
GPTea应助科研通管家采纳,获得10
8分钟前
GPTea应助科研通管家采纳,获得10
8分钟前
GPTea应助科研通管家采纳,获得10
8分钟前
量子星尘发布了新的文献求助150
8分钟前
TTRRCEB发布了新的文献求助10
8分钟前
沉默的小虾米完成签到,获得积分10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
Lucas应助科研通管家采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910211
求助须知:如何正确求助?哪些是违规求助? 4186186
关于积分的说明 12999166
捐赠科研通 3953517
什么是DOI,文献DOI怎么找? 2167972
邀请新用户注册赠送积分活动 1186428
关于科研通互助平台的介绍 1093500