重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Computational planning of the synthesis of complex natural products

自然(考古学) 计算机科学 化学 生化工程 生物 工程类 古生物学
作者
Barbara Mikulak-Klucznik,Patrycja Gołębiowska,Alison A. Bayly,Oskar Popik,Tomasz Klucznik,Sara Szymkuć,Ewa Gajewska,Piotr Dittwald,Olga Staszewska‐Krajewska,Wiktor Beker,Tomasz Badowski,Karl A. Scheidt,Karol Molga,Jacek Młynarski,Milan Mrksich,Bartosz A. Grzybowski
出处
期刊:Nature [Springer Nature]
卷期号:588 (7836): 83-88 被引量:253
标识
DOI:10.1038/s41586-020-2855-y
摘要

Training algorithms to computationally plan multistep organic syntheses has been a challenge for more than 50 years1-7. However, the field has progressed greatly since the development of early programs such as LHASA1,7, for which reaction choices at each step were made by human operators. Multiple software platforms6,8-14 are now capable of completely autonomous planning. But these programs 'think' only one step at a time and have so far been limited to relatively simple targets, the syntheses of which could arguably be designed by human chemists within minutes, without the help of a computer. Furthermore, no algorithm has yet been able to design plausible routes to complex natural products, for which much more far-sighted, multistep planning is necessary15,16 and closely related literature precedents cannot be relied on. Here we demonstrate that such computational synthesis planning is possible, provided that the program's knowledge of organic chemistry and data-based artificial intelligence routines are augmented with causal relationships17,18, allowing it to 'strategize' over multiple synthetic steps. Using a Turing-like test administered to synthesis experts, we show that the routes designed by such a program are largely indistinguishable from those designed by humans. We also successfully validated three computer-designed syntheses of natural products in the laboratory. Taken together, these results indicate that expert-level automated synthetic planning is feasible, pending continued improvements to the reaction knowledge base and further code optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助123采纳,获得30
1秒前
直率的芫发布了新的文献求助10
2秒前
2秒前
wzh完成签到,获得积分10
2秒前
张三毛完成签到,获得积分10
3秒前
4秒前
4秒前
隐形曼青应助狂野的柚子采纳,获得10
4秒前
6秒前
万能图书馆应助7890733采纳,获得10
7秒前
魏阳完成签到,获得积分10
8秒前
小张完成签到 ,获得积分10
8秒前
11发布了新的文献求助10
8秒前
8秒前
8秒前
Ava应助SCi编辑采纳,获得10
10秒前
折光完成签到,获得积分10
10秒前
难过含烟完成签到 ,获得积分10
11秒前
666发布了新的文献求助10
11秒前
achulw发布了新的文献求助10
12秒前
都安完成签到,获得积分10
12秒前
13秒前
迷路的寻云完成签到 ,获得积分10
13秒前
treeman发布了新的文献求助10
14秒前
14秒前
14秒前
天天快乐应助胖小羊采纳,获得10
14秒前
14秒前
tdw完成签到,获得积分10
15秒前
镓氧锌钇铀应助一百分采纳,获得20
15秒前
虚心的冷松完成签到,获得积分10
17秒前
迷路的寻云关注了科研通微信公众号
17秒前
18秒前
zhscu发布了新的文献求助10
18秒前
kk发布了新的文献求助10
19秒前
19秒前
xdli发布了新的文献求助10
19秒前
赘婿应助虚心的冷松采纳,获得10
20秒前
achulw完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467978
求助须知:如何正确求助?哪些是违规求助? 4571531
关于积分的说明 14330478
捐赠科研通 4498059
什么是DOI,文献DOI怎么找? 2464295
邀请新用户注册赠送积分活动 1453038
关于科研通互助平台的介绍 1427737