Computational planning of the synthesis of complex natural products

自然(考古学) 计算机科学 化学 生化工程 生物 工程类 古生物学
作者
Barbara Mikulak-Klucznik,Patrycja Gołębiowska,Alison A. Bayly,Oskar Popik,Tomasz Klucznik,Sara Szymkuć,Ewa Gajewska,Piotr Dittwald,Olga Staszewska‐Krajewska,Wiktor Beker,Tomasz Badowski,Karl A. Scheidt,Karol Molga,Jacek Młynarski,Milan Mrksich,Bartosz A. Grzybowski
出处
期刊:Nature [Springer Nature]
卷期号:588 (7836): 83-88 被引量:259
标识
DOI:10.1038/s41586-020-2855-y
摘要

Training algorithms to computationally plan multistep organic syntheses has been a challenge for more than 50 years1-7. However, the field has progressed greatly since the development of early programs such as LHASA1,7, for which reaction choices at each step were made by human operators. Multiple software platforms6,8-14 are now capable of completely autonomous planning. But these programs 'think' only one step at a time and have so far been limited to relatively simple targets, the syntheses of which could arguably be designed by human chemists within minutes, without the help of a computer. Furthermore, no algorithm has yet been able to design plausible routes to complex natural products, for which much more far-sighted, multistep planning is necessary15,16 and closely related literature precedents cannot be relied on. Here we demonstrate that such computational synthesis planning is possible, provided that the program's knowledge of organic chemistry and data-based artificial intelligence routines are augmented with causal relationships17,18, allowing it to 'strategize' over multiple synthetic steps. Using a Turing-like test administered to synthesis experts, we show that the routes designed by such a program are largely indistinguishable from those designed by humans. We also successfully validated three computer-designed syntheses of natural products in the laboratory. Taken together, these results indicate that expert-level automated synthetic planning is feasible, pending continued improvements to the reaction knowledge base and further code optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助nqterysc采纳,获得10
2秒前
BaooooooMao完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
浩气长存完成签到 ,获得积分10
3秒前
arsenal完成签到 ,获得积分10
3秒前
儒雅黑裤完成签到,获得积分10
4秒前
勤奋雨完成签到,获得积分10
5秒前
辛勤谷雪完成签到,获得积分0
5秒前
mumuaidafu完成签到 ,获得积分10
5秒前
《子非鱼》完成签到,获得积分10
6秒前
花白年华哈哈哈完成签到,获得积分10
7秒前
李大王完成签到 ,获得积分10
7秒前
ludong_0完成签到,获得积分10
8秒前
9秒前
辛勤如柏完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
10秒前
Ava应助科研通管家采纳,获得30
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
大仙完成签到,获得积分10
13秒前
fang完成签到,获得积分10
15秒前
喜凉的采枫完成签到 ,获得积分10
15秒前
钱塘郎中完成签到,获得积分0
16秒前
凶狠的土豆丝完成签到 ,获得积分10
16秒前
日照金峰完成签到,获得积分10
17秒前
LD完成签到 ,获得积分10
17秒前
17秒前
NexusExplorer应助Maestro_S采纳,获得10
18秒前
19秒前
科研通AI6.1应助马成双采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
绵绵完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
wjw发布了新的文献求助10
20秒前
lh完成签到 ,获得积分10
22秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773484
求助须知:如何正确求助?哪些是违规求助? 5611745
关于积分的说明 15431379
捐赠科研通 4905949
什么是DOI,文献DOI怎么找? 2639966
邀请新用户注册赠送积分活动 1587841
关于科研通互助平台的介绍 1542900