Computational planning of the synthesis of complex natural products

自然(考古学) 计算机科学 化学 生化工程 生物 工程类 古生物学
作者
Barbara Mikulak-Klucznik,Patrycja Gołębiowska,Alison A. Bayly,Oskar Popik,Tomasz Klucznik,Sara Szymkuć,Ewa Gajewska,Piotr Dittwald,Olga Staszewska‐Krajewska,Wiktor Beker,Tomasz Badowski,Karl A. Scheidt,Karol Molga,Jacek Młynarski,Milan Mrksich,Bartosz A. Grzybowski
出处
期刊:Nature [Springer Nature]
卷期号:588 (7836): 83-88 被引量:205
标识
DOI:10.1038/s41586-020-2855-y
摘要

Training algorithms to computationally plan multistep organic syntheses has been a challenge for more than 50 years1-7. However, the field has progressed greatly since the development of early programs such as LHASA1,7, for which reaction choices at each step were made by human operators. Multiple software platforms6,8-14 are now capable of completely autonomous planning. But these programs 'think' only one step at a time and have so far been limited to relatively simple targets, the syntheses of which could arguably be designed by human chemists within minutes, without the help of a computer. Furthermore, no algorithm has yet been able to design plausible routes to complex natural products, for which much more far-sighted, multistep planning is necessary15,16 and closely related literature precedents cannot be relied on. Here we demonstrate that such computational synthesis planning is possible, provided that the program's knowledge of organic chemistry and data-based artificial intelligence routines are augmented with causal relationships17,18, allowing it to 'strategize' over multiple synthetic steps. Using a Turing-like test administered to synthesis experts, we show that the routes designed by such a program are largely indistinguishable from those designed by humans. We also successfully validated three computer-designed syntheses of natural products in the laboratory. Taken together, these results indicate that expert-level automated synthetic planning is feasible, pending continued improvements to the reaction knowledge base and further code optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼雷发布了新的文献求助10
刚刚
wwc应助学不可以已采纳,获得300
1秒前
3秒前
4秒前
bofu发布了新的文献求助30
5秒前
7秒前
伶俐绿柏发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
wanli445完成签到,获得积分10
11秒前
11秒前
margine完成签到,获得积分10
11秒前
wanci应助小天才123采纳,获得10
12秒前
12秒前
华仔应助千山暮雪采纳,获得10
13秒前
Foremelon完成签到,获得积分10
16秒前
bofu发布了新的文献求助10
16秒前
超帅柚子完成签到 ,获得积分10
19秒前
ly完成签到,获得积分10
20秒前
22秒前
22秒前
SCINEXUS应助多多发SCI采纳,获得20
22秒前
英俊的铭应助平常雨寒采纳,获得10
23秒前
bofu发布了新的文献求助10
23秒前
木木木木完成签到,获得积分10
25秒前
klb13应助动听幻儿采纳,获得20
26秒前
26秒前
领导范儿应助baby的跑男采纳,获得10
26秒前
27秒前
nihaoya172发布了新的文献求助10
27秒前
bofu发布了新的文献求助10
31秒前
32秒前
小天才123发布了新的文献求助10
32秒前
科研通AI2S应助寂寞的梦芝采纳,获得10
32秒前
34秒前
ww发布了新的文献求助10
35秒前
领导范儿应助FHW采纳,获得10
35秒前
酷波er应助彪壮的一曲采纳,获得10
37秒前
多多发SCI完成签到,获得积分10
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299813
求助须知:如何正确求助?哪些是违规求助? 2934662
关于积分的说明 8470165
捐赠科研通 2608229
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574