Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems

计算机科学 算法 元启发式 多群优化 粒子群优化 数学优化 最优化问题 无导数优化 并行元启发式 元优化 连续优化 趋同(经济学) 数学 经济增长 经济
作者
Fatma A. Hashim,Kashif Hussain,Essam H. Houssein,Mai S. Mabrouk,Walid Al‐Atabany
出处
期刊:Applied Intelligence [Springer Science+Business Media]
卷期号:51 (3): 1531-1551 被引量:718
标识
DOI:10.1007/s10489-020-01893-z
摘要

The difficulty and complexity of the real-world numerical optimization problems has grown manifold, which demands efficient optimization methods. To date, various metaheuristic approaches have been introduced, but only a few have earned recognition in research community. In this paper, a new metaheuristic algorithm called Archimedes optimization algorithm (AOA) is introduced to solve the optimization problems. AOA is devised with inspirations from an interesting law of physics Archimedes’ Principle. It imitates the principle of buoyant force exerted upward on an object, partially or fully immersed in fluid, is proportional to weight of the displaced fluid. To evaluate performance, the proposed AOA algorithm is tested on CEC’17 test suite and four engineering design problems. The solutions obtained with AOA have outperformed well-known state-of-the-art and recently introduced metaheuristic algorithms such genetic algorithms (GA), particle swarm optimization (PSO), differential evolution variants L-SHADE and LSHADE-EpSin, whale optimization algorithm (WOA), sine-cosine algorithm (SCA), Harris’ hawk optimization (HHO), and equilibrium optimizer (EO). The experimental results suggest that AOA is a high-performance optimization tool with respect to convergence speed and exploration-exploitation balance, as it is effectively applicable for solving complex problems. The source code is currently available for public from: https://www.mathworks.com/matlabcentral/fileexchange/79822-archimedes-optimization-algorithm
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依小米完成签到 ,获得积分10
1秒前
Serena510完成签到 ,获得积分10
2秒前
3秒前
3秒前
Alisa发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
伯赏人杰发布了新的文献求助10
9秒前
9秒前
完美世界应助踏实凡阳采纳,获得10
10秒前
柒_l发布了新的文献求助10
10秒前
10秒前
12秒前
彤彤彤红红红完成签到,获得积分10
13秒前
13秒前
羊成木木发布了新的文献求助10
13秒前
WRL发布了新的文献求助10
14秒前
16秒前
搞怪莫茗应助xiaowen采纳,获得10
18秒前
无花果应助Shirley采纳,获得30
20秒前
20秒前
诸茹嫣发布了新的文献求助10
21秒前
21秒前
小白鞋完成签到 ,获得积分10
22秒前
fei发布了新的文献求助20
23秒前
852应助熊熊采纳,获得10
25秒前
25秒前
25秒前
25秒前
27秒前
踏实凡阳发布了新的文献求助10
27秒前
希望天下0贩的0应助CQ采纳,获得10
28秒前
糊糊应助Alisa采纳,获得10
28秒前
Lekai发布了新的文献求助10
29秒前
禾苗发布了新的文献求助10
31秒前
沉静的时光完成签到 ,获得积分10
32秒前
32秒前
34秒前
小刘完成签到,获得积分10
34秒前
grumpysquirel发布了新的文献求助30
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019