Nucleation of dislocations and their dynamics in layered oxides cathode materials during battery charging

电池(电) 化学工程 化学物理 电解质 凝聚态物理
作者
Andrej Singer,Sunny Hy,Minghao Zhang,Devin Cela,Chengcheng Fang,Bao Qiu,Y. Xia,Zhen Liu,Andrew Ulvestad,Nelson Hua,James Wingert,Haodong Liu,Michael Sprung,Alexey Zozulya,Evan Maxey,Ross Harder,Ying Shirley Meng,Oleg Shpyrko
出处
期刊:arXiv: Materials Science 被引量:156
标识
DOI:10.1038/s41560-018-0184-2
摘要

Defects and their interactions in crystalline solids often underpin material properties and functionality as they are decisive for stability, result in enhanced diffusion, and act as a reservoir of vacancies. Recently, lithium-rich layered oxides have emerged among the leading candidates for the next-generation energy storage cathode material, delivering 50 % excess capacity over commercially used compounds. Oxygen-redox reactions are believed to be responsible for the excess capacity, however, voltage fading has prevented commercialization of these new materials. Despite extensive research the understanding of the mechanisms underpinning oxygen-redox reactions and voltage fade remain incomplete. Here, using operando three-dimensional Bragg coherent diffractive imaging, we directly observe nucleation of a mobile dislocation network in nanoparticles of lithium-rich layered oxide material. Surprisingly, we find that dislocations form more readily in the lithium-rich layered oxide material as compared with a conventional layered oxide material, suggesting a link between the defects and the anomalously high capacity in lithium-rich layered oxides. The formation of a network of partial dislocations dramatically alters the local lithium environment and contributes to the voltage fade. Based on our findings we design and demonstrate a method to recover the original high voltage functionality. Our findings reveal that the voltage fade in lithium-rich layered oxides is reversible and call for new paradigms for improved design of oxygen-redox active materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhuhan发布了新的文献求助10
1秒前
赵明君发布了新的文献求助30
1秒前
1秒前
敬老院1号应助Eric采纳,获得50
1秒前
lllllll发布了新的文献求助10
2秒前
2秒前
麻果完成签到,获得积分10
2秒前
禹丹烟发布了新的文献求助10
3秒前
铃兰完成签到,获得积分10
4秒前
77完成签到 ,获得积分10
4秒前
被划分发布了新的文献求助10
4秒前
酱子完成签到 ,获得积分10
5秒前
bkagyin应助这不得行采纳,获得10
5秒前
共享精神应助这不得行采纳,获得10
5秒前
烟花应助这不得行采纳,获得10
5秒前
脑洞疼应助这不得行采纳,获得10
5秒前
5秒前
脑洞疼应助hanatae采纳,获得10
5秒前
qin希望发布了新的文献求助10
6秒前
6秒前
诸葛正豪发布了新的文献求助10
6秒前
kyt发布了新的文献求助10
7秒前
123456完成签到,获得积分0
7秒前
大个应助十六采纳,获得10
7秒前
今后应助美好问旋采纳,获得10
8秒前
DrWang发布了新的文献求助10
8秒前
简爱发布了新的文献求助10
9秒前
嘻鱼徐发布了新的文献求助10
9秒前
huangyao完成签到 ,获得积分10
9秒前
kaikai完成签到,获得积分10
9秒前
9秒前
小葫芦完成签到 ,获得积分10
9秒前
9秒前
5High_0完成签到 ,获得积分10
10秒前
幸福遥完成签到,获得积分10
10秒前
不展完成签到 ,获得积分10
10秒前
拼搏的狗完成签到 ,获得积分10
10秒前
11秒前
Akim应助鲤角兽采纳,获得10
12秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3408487
求助须知:如何正确求助?哪些是违规求助? 3012625
关于积分的说明 8855058
捐赠科研通 2699846
什么是DOI,文献DOI怎么找? 1480188
科研通“疑难数据库(出版商)”最低求助积分说明 684209
邀请新用户注册赠送积分活动 678506