血小板裂解物
间充质干细胞
细胞疗法
移植
免疫学
胎牛血清
再生医学
组织工程
细胞生物学
生物
干细胞
医学
细胞
内科学
生物医学工程
生物化学
作者
Lassina Barro,Pierre-Alain Burnouf,Ming Li Chou,Ouada Nebie,Yu Wen Wu,Ming Sheng Chen,Miryana Radosevic,Folke Knutson,Thierry Burnouf
出处
期刊:Platelets
[Informa]
日期:2020-11-29
卷期号:32 (2): 152-162
被引量:18
标识
DOI:10.1080/09537104.2020.1849602
摘要
A pathogen-free and standardized xeno-free supplement of growth media is required for the ex vivo propagation of human cells used as advanced therapeutic medicinal products and for clinical translation in regenerative medicine and cell therapies. Human platelet lysate (HPL) made from therapeutic-grade platelet concentrate (PC) is increasingly regarded as being an efficient xeno-free alternative growth medium supplement to fetal bovine serum (FBS) for clinical-grade isolation and/or propagation of human cells. Most experimental studies establishing the superiority of HPL over FBS were conducted using mesenchymal stromal cells (MSCs) from bone marrow or adipose tissues. Data almost unanimously concur that MSCs expanded in a media supplemented with HPL have improved proliferation, shorter doubling times, and preserved clonogenicity, immunophenotype, in vitro trilineage differentiation capacity, and T-cell immunosuppressive activity. HPL can also be substituted for FBS when propagating MSCs from various other tissue sources, including Wharton jelly, the umbilical cord, amniotic fluid, dental pulp, periodontal ligaments, and apical papillae. Interestingly, HPL xeno-free supplementation is also proving successful for expanding human-differentiated cells, including chondrocytes, corneal endothelium and corneal epithelium cells, and tenocytes, for transplantation and tissue-engineering applications. In addition, the most recent developments suggest the possibility of successfully expanding immune cells such as macrophages, dendritic cells, and chimeric antigen receptor-T cells in HPL, further broadening its use as a growth medium supplement. Therefore, strong scientific rationale supports the use of HPL as a universal growth medium supplement for isolating and propagating therapeutic human cells for transplantation and tissue engineering. Efforts are underway to ensure optimal standardization and pathogen safety of HPL to secure its reliability for clinical-grade cell-therapy and regenerative medicine products and tissue engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI