From local explanations to global understanding with explainable AI for trees

计算机科学
作者
Scott Lundberg,Gabriel Erion,Hugh Chen,Alex J. DeGrave,Jordan M. Prutkin,Bala G. Nair,Ronit Katz,Jonathan Himmelfarb,Nisha Bansal,Su‐In Lee
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:2 (1): 56-67 被引量:5448
标识
DOI:10.1038/s42256-019-0138-9
摘要

Tree-based machine learning models such as random forests, decision trees and gradient boosted trees are popular nonlinear predictive models, yet comparatively little attention has been paid to explaining their predictions. Here we improve the interpretability of tree-based models through three main contributions. (1) A polynomial time algorithm to compute optimal explanations based on game theory. (2) A new type of explanation that directly measures local feature interaction effects. (3) A new set of tools for understanding global model structure based on combining many local explanations of each prediction. We apply these tools to three medical machine learning problems and show how combining many high-quality local explanations allows us to represent global structure while retaining local faithfulness to the original model. These tools enable us to (1) identify high-magnitude but low-frequency nonlinear mortality risk factors in the US population, (2) highlight distinct population subgroups with shared risk characteristics, (3) identify nonlinear interaction effects among risk factors for chronic kidney disease and (4) monitor a machine learning model deployed in a hospital by identifying which features are degrading the model's performance over time. Given the popularity of tree-based machine learning models, these improvements to their interpretability have implications across a broad set of domains. Tree-based machine learning models are widely used in domains such as healthcare, finance and public services. The authors present an explanation method for trees that enables the computation of optimal local explanations for individual predictions, and demonstrate their method on three medical datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lily发布了新的文献求助10
刚刚
刚刚
1秒前
呆呆熊发布了新的文献求助10
1秒前
祖百川发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
NexusExplorer应助大傻春采纳,获得10
2秒前
WaterBru发布了新的文献求助10
2秒前
风和日丽发布了新的文献求助10
2秒前
3秒前
lily发布了新的文献求助10
3秒前
jxl完成签到,获得积分10
3秒前
科斯基完成签到,获得积分10
4秒前
自然秋柳发布了新的文献求助10
5秒前
chenxi3099发布了新的文献求助10
5秒前
小尾巴发布了新的文献求助10
5秒前
6秒前
所所应助吉不二采纳,获得10
6秒前
ying发布了新的文献求助10
6秒前
一修发布了新的文献求助10
6秒前
7秒前
毛毛发布了新的文献求助20
7秒前
znn发布了新的文献求助10
7秒前
精明书包完成签到 ,获得积分10
8秒前
张可乐发布了新的文献求助10
8秒前
wxy发布了新的文献求助10
9秒前
shelley完成签到,获得积分10
9秒前
9秒前
Lily完成签到,获得积分10
11秒前
干脆苹果完成签到,获得积分10
12秒前
传奇3应助Benny采纳,获得10
12秒前
13秒前
残月初升发布了新的文献求助10
13秒前
13秒前
13秒前
打打应助忧虑的绮梅采纳,获得30
13秒前
小尾巴完成签到,获得积分10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974844
求助须知:如何正确求助?哪些是违规求助? 3519270
关于积分的说明 11197844
捐赠科研通 3255496
什么是DOI,文献DOI怎么找? 1797791
邀请新用户注册赠送积分活动 877187
科研通“疑难数据库(出版商)”最低求助积分说明 806202