Metabolic engineering of <italic>Saccharomyces cerevisiae</italic> chassis

酿酒酵母 底盘 酵母 化学 生物化学 工程类 结构工程
作者
Yunfeng Zhang,Dan He,Huan Lu,Jian‐Dong Huang,Xiaozhou Luo
出处
期刊:Kexue tongbao [Science China Press]
卷期号:66 (3): 310-318 被引量:2
标识
DOI:10.1360/tb-2020-0494
摘要

Saccharomyces cerevisiae acts as a bio-foundry for producing natural products. S. cerevisiae ’s intrinsic pathways highlight microbial cell factories to produce pharmaceutics, food additive, and fine chemicals. For high-titer, yield, and conversion of target compounds, the critical point is that fine-tuning and optimizing intracellular metabolic flux in the yeast cell. Acetyl-CoA is the fundamental precursor for central metabolism and heterologous pathway. In comparison, acetyl-CoA compartmentalizes in mitochondria, nucleus, peroxisome subcellular, and cytosol. Most of the pathway enzymes are expressed in S. cerevisiae cytosol. So, we summarized the fine-tuning strategies of acetyl-CoA synthesis in cytosol matrix. The new acetyl-CoA pathway (phosphoketolase, phosphotransacetylase, and acetaldehyde dehydrogenase, PK/PTA-ADA) shows a high conversion ratio from the carbon source. The PK/PTA-ADA pathway presents improved redox balance, limited ATP requirement, and reduced carbon loss to CO2. Moreover, the heterologous ATP-dependent citrate lyase precisely converts mitochondria metabolism into acetyl-CoA. Knock-out acetyl-CoA depletion pathways retain high acetyl-CoA titer in the cytosol. The continuous metabolic engineering on PK/PTA-ADA pathway is expected for higher acetyl-CoA titer. The Mevalonate pathway has been engineered to produce terpenoids in S. cerevisiae . The exogenous HMG-CoA synthase and HMG-CoA reductase boost mevalonate pathway from acetyl-CoA. Further, the diversified terpenoids are generated from C5 unite Isopentenyl diphosphate and its’ isomer dimethylallyl diphosphate. Intrinsic farnesyl diphosphate synthase (Erg20) shows both dimethylallyltransferase (geranyl diphosphate, C10 product) and geranyltransferase (farnesyl diphosphate, C15 product) activity. The F96W/N127W mutations in Erg20 caused steric hindrance for geranyl diphosphate substrate. So, geranyl diphosphate is accumulated to produce C10 terpenoids or meroterpenoids. Moreover, geranylgeranyl diphosphate synthase (CrtE) convert farnesyl diphosphate (C15) into geranylgeranyl diphosphate (C20) for carotene, lycopene, astaxanthin, and taxol, etc. Interestingly, the novel isopentenol utilization pathway has been constructed in E. coli and Y. lipolytica to supply IPP and IMAPP precursors from isopentanol. This alternative pathway could relieve the acetyl-CoA supply burden in the mevalonate pathway. Fatty acid synthase (FAS) produces fatty acid with specific carbon length and derivatives from acetyl-CoA and malonyl-CoA. Acetyl-CoA carboxylase (ACC1) catalyzes acetyl-CoA to produce malonyl-CoA, which is utilized as the carbon unite in fatty acid pathway. Overexpression of ACC1 and mitochondria located isoenzyme Hfa1 significantly improves fatty acid production. FAS in S. cerevisiae is an α6β6 heterodimer protein and these catalytic domains are engineered to produce specific fatty acids. Directed mutations in ketoacyl synthase (KS), acetyltransferase (AT), and malonyl/palmitoyl transferase (MPT) domains engage FAS to generate high-yield short/medium fatty acid (C6 and C8). Furthermore, fatty acid reductase and acyl-ACP reductase convert fatty acid or fatty acyl-ACP to fatty aldehydes, respectively. Aldehyde deformylating oxygenase produces alkanes from fatty aldehydes substrate. Significantly, fatty acid-derived bio hydrocarbons showed closets properties to petroleum fuel. We reviewed the metabolic strategies of acetyl-CoA synthesis, the novel mevalonate pathway and fatty acid synthesis. These strategies may be valuable for producing high-yield terpene and fatty acid derivatives in Saccharomyces cerevisiae .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜猫酱酱子完成签到,获得积分10
1秒前
搞一篇SCI完成签到,获得积分10
1秒前
真实的勒发布了新的文献求助10
1秒前
陶军辉发布了新的文献求助10
1秒前
AA完成签到,获得积分10
2秒前
3秒前
Meowly完成签到,获得积分10
3秒前
豪哥大大发布了新的文献求助10
3秒前
神勇的雅香完成签到,获得积分0
3秒前
文艺天晴发布了新的文献求助10
3秒前
科研通AI5应助savior采纳,获得10
3秒前
田様应助顺利的乐枫采纳,获得10
5秒前
温婉的白凡完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
汉域人完成签到,获得积分10
6秒前
于其言完成签到,获得积分10
6秒前
7秒前
南医李云龙完成签到,获得积分20
7秒前
ww1完成签到,获得积分20
7秒前
乐乐应助阿良采纳,获得10
8秒前
认真的寻绿完成签到,获得积分10
8秒前
8秒前
天天快乐应助深情小丑鱼采纳,获得10
8秒前
8秒前
zz发布了新的文献求助10
8秒前
qazx完成签到 ,获得积分10
9秒前
Akim应助yanGGGGGG采纳,获得10
9秒前
9秒前
10秒前
搜集达人应助欣喜代秋采纳,获得10
10秒前
ll完成签到 ,获得积分10
11秒前
二二发布了新的文献求助10
11秒前
11秒前
12秒前
yangmingrui发布了新的文献求助10
12秒前
13秒前
FashionBoy应助陶军辉采纳,获得10
13秒前
小蘑菇应助俭朴依白采纳,获得10
14秒前
爱笑的平蓝完成签到,获得积分10
14秒前
西西弗斯完成签到,获得积分10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661904
求助须知:如何正确求助?哪些是违规求助? 3222831
关于积分的说明 9748659
捐赠科研通 2932565
什么是DOI,文献DOI怎么找? 1605722
邀请新用户注册赠送积分活动 758072
科研通“疑难数据库(出版商)”最低求助积分说明 734680