Metal Halide Superionic Conductors for All-Solid-State Batteries

快离子导体 卤化物 纳米技术 电化学储能 电化学 材料科学 储能 化学 无机化学 电极 物理化学 超级电容器 物理 功率(物理) 电解质 量子力学
作者
Jianwen Liang,Xiaona Li,Keegan R. Adair,Xueliang Sun
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (4): 1023-1033 被引量:223
标识
DOI:10.1021/acs.accounts.0c00762
摘要

ConspectusRechargeable all-solid-state Li batteries (ASSLBs) are considered to be the next generation of electrochemical energy storage systems. The development of solid-state electrolytes (SSEs), which are key materials for ASSLBs, is therefore one of the most important subjects in modern energy storage chemistry. Various types of electrolytes such as polymer-, oxide-, and sulfide-based SSEs have been developed to date and the discovery of new superionic conductors is still ongoing. Metal-halide SSEs (Li-M-X, where M is a metal element and X is a halogen) are emerging as new candidates with a number of attractive properties and advantages such as wide electrochemical stability windows (0.36-6.71 V vs Li/Li+) and better chemical stability toward cathode materials compared to other SSEs. Furthermore, some of the metal-halide SSEs (such as the Li3InCl6 developed by our group) can be directly synthesized at large scales in a water solvent, removing the need for special apparatus or handling in an inert atmosphere. Based on the recent advances, herein we focus on the topic of metal-halide SSEs, aiming to provide a guidance toward further development of novel halide SSEs and push them forward to meet the multiple requirements of energy storage devices.In this Account, we describe our recent progress in developing metal halide SSEs and focus on some newly reported findings based on state-of-the-art publications on this topic. A discussion on the structure of metal-halide SSEs will be first explored. Subsequently, we will illustrate the effective approaches to enhance the ionic conductivities of metal halide SSEs including the effect of anion sublattice framework, the regulation of site occupation and disorder, and defect engineering. Specifically, we demonstrated that proper structural framework, balanced Li+/vacancy concentration, and reduced blocking effect can promote fast Li+ migration for metal halide SSEs. Moreover, humidity stability and degradation chemistry of metal halide SSEs have been summarized for the first time. Some examples of the application of metal halide SSEs with stability toward humidity have been demonstrated. Direct synthesis of halide SSEs on cathode materials by the water-mediated route has been used to eliminate the interfacial challenges of ASSLBs and has been shown to act as an interfacial modifier for high-performance all-solid-state Li-O2 batteries. Taken together, this Account on metal halide SSEs will provide an insightful perspective over the recent development and future research directions that can lead to advanced electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助xiaokezhang采纳,获得10
刚刚
sober发布了新的文献求助10
1秒前
1秒前
jerry_x完成签到,获得积分10
1秒前
zl987发布了新的文献求助10
1秒前
2秒前
Paris完成签到,获得积分10
2秒前
忧伤的八宝粥完成签到,获得积分0
2秒前
lalala发布了新的文献求助10
3秒前
NexusExplorer应助STP顶峰相见采纳,获得10
3秒前
传奇3应助Ilan采纳,获得10
4秒前
FashionBoy应助子铭采纳,获得10
4秒前
4秒前
23完成签到,获得积分10
4秒前
oo发布了新的文献求助10
5秒前
落后以旋发布了新的文献求助10
5秒前
科研通AI2S应助banabanama采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
swswsw发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
无极微光应助阔达的夜南采纳,获得20
9秒前
10秒前
10秒前
10秒前
小李应助修辛采纳,获得10
10秒前
10秒前
11秒前
Tindal发布了新的文献求助10
11秒前
小李应助小涵采纳,获得10
12秒前
12秒前
SciGPT应助zl987采纳,获得10
12秒前
龙仁发布了新的文献求助10
12秒前
NexusExplorer应助顺利毕业采纳,获得30
13秒前
水蜜桃发布了新的文献求助10
13秒前
冷静曼岚完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728563
求助须知:如何正确求助?哪些是违规求助? 5313670
关于积分的说明 15314683
捐赠科研通 4875796
什么是DOI,文献DOI怎么找? 2618967
邀请新用户注册赠送积分活动 1568573
关于科研通互助平台的介绍 1525175