亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners

Boosting(机器学习) 随机森林 集成学习 机器学习 人工神经网络 决策树 人工智能 计算机科学 集合预报 均方误差 支持向量机 Python(编程语言) 多层感知器 阿达布思 梯度升压 数学 统计 操作系统
作者
Furqan Farooq,Wisal Ahmed,Arslan Akbar,Fahid Aslam,Rayed Alyousef
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:292: 126032-126032 被引量:358
标识
DOI:10.1016/j.jclepro.2021.126032
摘要

The cementitious matrix of high-performance concrete (HPC) is highly complex, and ambiguity exists with its mix design. Compressive strength can vary with the composition and proportion of constituent material used. To predict the strength of such a complex matrix the use of robust and efficient machine learning approaches has become indispensable. This study uses machine intelligence algorithms with individual learners and ensemble learners (bagging, boosting) to predict the strength of (HPC) prepared with waste materials. This is done by employing Anaconda (Python). Ensemble learner bagging, adaptive boosting algorithm, and random forest as modified bagging algorithm are employed to construct strong ensemble learner by incorporating weak learner. The ensemble learners are used on individual learners or weak learners including support vector machine and decision tree through regression and multilayer perceptron neural network. The data consists of 1030 data samples in which eight parameters namely cement, water, sand, gravels, superplasticizer, concrete age, fly ash and granulated blast furnace slag were chosen to predict the output. Twenty bagging and boosting sub-models are trained on data and optimization was done to give maximum R2. The test data is also validated by means of K-Fold cross-validation using R2, MAE, and RMSE. Moreover, evaluation of ensemble models with individual one is also checked by statistical model performance index (e.g., MAE, MSE, RMSE, and RMLSE). The result suggested that the individual model response is enhanced by using the bagging and boosting learners. Overall, random forest and decision tree with bagging give the robust performance of the models with R2 = 0.92 with the least errors. On average, the ensemble model in machine learning would enhance the performance of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
初始发布了新的文献求助10
9秒前
如意蚂蚁完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
木昜发布了新的文献求助10
17秒前
20秒前
25秒前
29秒前
爆米花应助初始采纳,获得10
34秒前
qq完成签到 ,获得积分10
35秒前
46秒前
香蕉觅云应助hb采纳,获得10
48秒前
科研通AI6.1应助小祝采纳,获得10
54秒前
57秒前
57秒前
shou完成签到 ,获得积分10
1分钟前
whardon发布了新的文献求助10
1分钟前
1分钟前
whardon完成签到,获得积分10
1分钟前
twk完成签到,获得积分10
1分钟前
1分钟前
开心惜梦完成签到,获得积分10
1分钟前
Mario发布了新的文献求助10
1分钟前
1分钟前
日光倾城完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Mario完成签到,获得积分10
1分钟前
万能图书馆应助LucyMartinez采纳,获得10
2分钟前
2分钟前
2分钟前
LucyMartinez发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Magic麦发布了新的文献求助10
2分钟前
2分钟前
庾稀给庾稀的求助进行了留言
2分钟前
hb发布了新的文献求助10
2分钟前
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746752
求助须知:如何正确求助?哪些是违规求助? 5438610
关于积分的说明 15355852
捐赠科研通 4886774
什么是DOI,文献DOI怎么找? 2627426
邀请新用户注册赠送积分活动 1575893
关于科研通互助平台的介绍 1532627