Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners

Boosting(机器学习) 随机森林 集成学习 机器学习 人工神经网络 决策树 人工智能 计算机科学 集合预报 均方误差 支持向量机 Python(编程语言) 阿达布思 梯度升压 数学 统计 操作系统
作者
Furqan Farooq,Wisal Ahmed,Arslan Akbar,Fahid Aslam,Rayed Alyousef
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:292: 126032-126032 被引量:259
标识
DOI:10.1016/j.jclepro.2021.126032
摘要

The cementitious matrix of high-performance concrete (HPC) is highly complex, and ambiguity exists with its mix design. Compressive strength can vary with the composition and proportion of constituent material used. To predict the strength of such a complex matrix the use of robust and efficient machine learning approaches has become indispensable. This study uses machine intelligence algorithms with individual learners and ensemble learners (bagging, boosting) to predict the strength of (HPC) prepared with waste materials. This is done by employing Anaconda (Python). Ensemble learner bagging, adaptive boosting algorithm, and random forest as modified bagging algorithm are employed to construct strong ensemble learner by incorporating weak learner. The ensemble learners are used on individual learners or weak learners including support vector machine and decision tree through regression and multilayer perceptron neural network. The data consists of 1030 data samples in which eight parameters namely cement, water, sand, gravels, superplasticizer, concrete age, fly ash and granulated blast furnace slag were chosen to predict the output. Twenty bagging and boosting sub-models are trained on data and optimization was done to give maximum R2. The test data is also validated by means of K-Fold cross-validation using R2, MAE, and RMSE. Moreover, evaluation of ensemble models with individual one is also checked by statistical model performance index (e.g., MAE, MSE, RMSE, and RMLSE). The result suggested that the individual model response is enhanced by using the bagging and boosting learners. Overall, random forest and decision tree with bagging give the robust performance of the models with R2 = 0.92 with the least errors. On average, the ensemble model in machine learning would enhance the performance of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
锅包肉发布了新的文献求助10
1秒前
咯咚完成签到 ,获得积分10
4秒前
DYYY完成签到,获得积分10
4秒前
RATHER完成签到,获得积分10
6秒前
李爱国应助yfy采纳,获得10
6秒前
10秒前
racill发布了新的文献求助10
15秒前
遇上就这样吧应助LIME采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
李健的小迷弟应助FFSGF采纳,获得10
18秒前
畅快又夏完成签到,获得积分10
18秒前
19秒前
20秒前
写个锤子完成签到,获得积分10
20秒前
21秒前
希望天下0贩的0应助li采纳,获得10
22秒前
yfy发布了新的文献求助10
23秒前
zhangjw完成签到 ,获得积分10
23秒前
suiyi发布了新的文献求助20
25秒前
含蓄嫣然完成签到,获得积分10
25秒前
26秒前
SCULGJ发布了新的文献求助10
26秒前
ll完成签到,获得积分10
27秒前
30秒前
libra_D完成签到,获得积分10
30秒前
祁曼岚完成签到,获得积分10
30秒前
zzh完成签到,获得积分10
31秒前
莫氓完成签到 ,获得积分10
32秒前
受伤灵薇完成签到,获得积分10
33秒前
37秒前
梧桐应助啦啦啦啦采纳,获得10
39秒前
狮子完成签到,获得积分10
40秒前
41秒前
阿伟关注了科研通微信公众号
42秒前
Lucas应助吉时采纳,获得10
45秒前
SD完成签到,获得积分20
48秒前
发发完成签到 ,获得积分10
48秒前
48秒前
啾啾栖鸟过完成签到,获得积分20
49秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010600
求助须知:如何正确求助?哪些是违规求助? 3550359
关于积分的说明 11305499
捐赠科研通 3284744
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499