Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners

Boosting(机器学习) 随机森林 集成学习 机器学习 人工神经网络 决策树 人工智能 计算机科学 集合预报 均方误差 支持向量机 Python(编程语言) 多层感知器 阿达布思 梯度升压 数学 统计 操作系统
作者
Furqan Farooq,Wisal Ahmed,Arslan Akbar,Fahid Aslam,Rayed Alyousef
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:292: 126032-126032 被引量:358
标识
DOI:10.1016/j.jclepro.2021.126032
摘要

The cementitious matrix of high-performance concrete (HPC) is highly complex, and ambiguity exists with its mix design. Compressive strength can vary with the composition and proportion of constituent material used. To predict the strength of such a complex matrix the use of robust and efficient machine learning approaches has become indispensable. This study uses machine intelligence algorithms with individual learners and ensemble learners (bagging, boosting) to predict the strength of (HPC) prepared with waste materials. This is done by employing Anaconda (Python). Ensemble learner bagging, adaptive boosting algorithm, and random forest as modified bagging algorithm are employed to construct strong ensemble learner by incorporating weak learner. The ensemble learners are used on individual learners or weak learners including support vector machine and decision tree through regression and multilayer perceptron neural network. The data consists of 1030 data samples in which eight parameters namely cement, water, sand, gravels, superplasticizer, concrete age, fly ash and granulated blast furnace slag were chosen to predict the output. Twenty bagging and boosting sub-models are trained on data and optimization was done to give maximum R2. The test data is also validated by means of K-Fold cross-validation using R2, MAE, and RMSE. Moreover, evaluation of ensemble models with individual one is also checked by statistical model performance index (e.g., MAE, MSE, RMSE, and RMLSE). The result suggested that the individual model response is enhanced by using the bagging and boosting learners. Overall, random forest and decision tree with bagging give the robust performance of the models with R2 = 0.92 with the least errors. On average, the ensemble model in machine learning would enhance the performance of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
董啊发布了新的文献求助10
刚刚
刚刚
希望天下0贩的0应助五七采纳,获得30
刚刚
pK关闭了pK文献求助
刚刚
刻苦的白昼完成签到,获得积分10
刚刚
刚刚
等待的小海豚完成签到,获得积分10
1秒前
小果果完成签到,获得积分10
2秒前
hzr发布了新的文献求助10
2秒前
优雅山柏发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
香蕉觅云应助zyq采纳,获得10
4秒前
Simone完成签到,获得积分10
4秒前
朝阳区李知恩应助张津浩采纳,获得20
5秒前
小书童应助西瓜采纳,获得10
5秒前
卧推120完成签到,获得积分10
5秒前
5秒前
ljyzz关注了科研通微信公众号
5秒前
SciGPT应助董啊采纳,获得10
6秒前
7秒前
陈慕枫发布了新的文献求助10
8秒前
零零柒完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
leeleetyo完成签到,获得积分10
9秒前
9秒前
科研猪完成签到,获得积分10
10秒前
momo发布了新的文献求助10
10秒前
11秒前
李6666发布了新的文献求助10
12秒前
泰勒也不会展开完成签到 ,获得积分10
12秒前
李健的小迷弟应助fhbsdufh采纳,获得10
13秒前
好好学习发布了新的文献求助10
13秒前
13秒前
杨润发布了新的文献求助10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4990191
求助须知:如何正确求助?哪些是违规求助? 4239222
关于积分的说明 13206043
捐赠科研通 4033624
什么是DOI,文献DOI怎么找? 2206823
邀请新用户注册赠送积分活动 1217987
关于科研通互助平台的介绍 1136175