Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners

Boosting(机器学习) 随机森林 集成学习 机器学习 人工神经网络 决策树 人工智能 计算机科学 集合预报 均方误差 支持向量机 Python(编程语言) 多层感知器 阿达布思 梯度升压 数学 统计 操作系统
作者
Furqan Farooq,Wisal Ahmed,Arslan Akbar,Fahid Aslam,Rayed Alyousef
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:292: 126032-126032 被引量:358
标识
DOI:10.1016/j.jclepro.2021.126032
摘要

The cementitious matrix of high-performance concrete (HPC) is highly complex, and ambiguity exists with its mix design. Compressive strength can vary with the composition and proportion of constituent material used. To predict the strength of such a complex matrix the use of robust and efficient machine learning approaches has become indispensable. This study uses machine intelligence algorithms with individual learners and ensemble learners (bagging, boosting) to predict the strength of (HPC) prepared with waste materials. This is done by employing Anaconda (Python). Ensemble learner bagging, adaptive boosting algorithm, and random forest as modified bagging algorithm are employed to construct strong ensemble learner by incorporating weak learner. The ensemble learners are used on individual learners or weak learners including support vector machine and decision tree through regression and multilayer perceptron neural network. The data consists of 1030 data samples in which eight parameters namely cement, water, sand, gravels, superplasticizer, concrete age, fly ash and granulated blast furnace slag were chosen to predict the output. Twenty bagging and boosting sub-models are trained on data and optimization was done to give maximum R2. The test data is also validated by means of K-Fold cross-validation using R2, MAE, and RMSE. Moreover, evaluation of ensemble models with individual one is also checked by statistical model performance index (e.g., MAE, MSE, RMSE, and RMLSE). The result suggested that the individual model response is enhanced by using the bagging and boosting learners. Overall, random forest and decision tree with bagging give the robust performance of the models with R2 = 0.92 with the least errors. On average, the ensemble model in machine learning would enhance the performance of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tanzhengqiang发布了新的文献求助200
1秒前
黄浦江发布了新的文献求助10
1秒前
ding应助jingxuan采纳,获得10
3秒前
在水一方应助长情胡萝卜采纳,获得10
4秒前
5秒前
6秒前
6秒前
7秒前
7秒前
无心的鲜花关注了科研通微信公众号
7秒前
7秒前
7秒前
7秒前
10秒前
LiuJ发布了新的文献求助10
11秒前
11秒前
cxy完成签到,获得积分10
11秒前
12秒前
任性的小丸子完成签到,获得积分10
12秒前
又欠发布了新的文献求助10
13秒前
AdnanKhan发布了新的文献求助10
13秒前
可耐的远侵完成签到 ,获得积分10
13秒前
liangm7完成签到,获得积分10
13秒前
13秒前
13秒前
侯笑笑发布了新的文献求助10
14秒前
黄浦江完成签到,获得积分10
14秒前
小常完成签到 ,获得积分10
14秒前
危机的盼晴完成签到,获得积分10
16秒前
烟花应助钟情紫色短裤采纳,获得10
16秒前
16秒前
16秒前
16秒前
希望天下0贩的0应助12345采纳,获得10
18秒前
18秒前
keyanzhang完成签到,获得积分10
19秒前
19秒前
风趣之云完成签到 ,获得积分10
19秒前
wanghh发布了新的文献求助10
19秒前
Duomo应助siri1313采纳,获得20
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344557
求助须知:如何正确求助?哪些是违规求助? 4479749
关于积分的说明 13944365
捐赠科研通 4376951
什么是DOI,文献DOI怎么找? 2404998
邀请新用户注册赠送积分活动 1397528
关于科研通互助平台的介绍 1369880