亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners

Boosting(机器学习) 随机森林 集成学习 机器学习 人工神经网络 决策树 人工智能 计算机科学 集合预报 均方误差 支持向量机 Python(编程语言) 多层感知器 阿达布思 梯度升压 数学 统计 操作系统
作者
Furqan Farooq,Wisal Ahmed,Arslan Akbar,Fahid Aslam,Rayed Alyousef
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:292: 126032-126032 被引量:358
标识
DOI:10.1016/j.jclepro.2021.126032
摘要

The cementitious matrix of high-performance concrete (HPC) is highly complex, and ambiguity exists with its mix design. Compressive strength can vary with the composition and proportion of constituent material used. To predict the strength of such a complex matrix the use of robust and efficient machine learning approaches has become indispensable. This study uses machine intelligence algorithms with individual learners and ensemble learners (bagging, boosting) to predict the strength of (HPC) prepared with waste materials. This is done by employing Anaconda (Python). Ensemble learner bagging, adaptive boosting algorithm, and random forest as modified bagging algorithm are employed to construct strong ensemble learner by incorporating weak learner. The ensemble learners are used on individual learners or weak learners including support vector machine and decision tree through regression and multilayer perceptron neural network. The data consists of 1030 data samples in which eight parameters namely cement, water, sand, gravels, superplasticizer, concrete age, fly ash and granulated blast furnace slag were chosen to predict the output. Twenty bagging and boosting sub-models are trained on data and optimization was done to give maximum R2. The test data is also validated by means of K-Fold cross-validation using R2, MAE, and RMSE. Moreover, evaluation of ensemble models with individual one is also checked by statistical model performance index (e.g., MAE, MSE, RMSE, and RMLSE). The result suggested that the individual model response is enhanced by using the bagging and boosting learners. Overall, random forest and decision tree with bagging give the robust performance of the models with R2 = 0.92 with the least errors. On average, the ensemble model in machine learning would enhance the performance of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
ceeray23发布了新的文献求助20
23秒前
无韶的月亮树完成签到 ,获得积分10
23秒前
852应助林迁采纳,获得10
28秒前
45秒前
Cmqq发布了新的文献求助10
48秒前
TwentyNine完成签到,获得积分10
55秒前
1分钟前
李健的小迷弟应助Cmqq采纳,获得10
1分钟前
bai完成签到 ,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
林迁发布了新的文献求助10
1分钟前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
起风了完成签到 ,获得积分10
2分钟前
billevans完成签到,获得积分10
2分钟前
传奇3应助薄荷采纳,获得10
2分钟前
Cmqq发布了新的文献求助10
2分钟前
jjjj完成签到,获得积分10
2分钟前
孔踏歌完成签到,获得积分10
2分钟前
水木子尔完成签到,获得积分10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
Hayat应助ceeray23采纳,获得20
3分钟前
3分钟前
Criminology34应助ceeray23采纳,获得20
3分钟前
蕴蝶发布了新的文献求助10
3分钟前
一川完成签到,获得积分10
3分钟前
蕴蝶完成签到,获得积分10
3分钟前
3分钟前
小江发布了新的文献求助10
3分钟前
3分钟前
优秀沛春完成签到,获得积分10
3分钟前
乐乐应助OnlyHarbour采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685513
关于积分的说明 14838543
捐赠科研通 4670625
什么是DOI,文献DOI怎么找? 2538207
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904