Spatio-temporal undersampling: Recovering ultrasonic guided wavefields from incomplete data with compressive sensing

欠采样 压缩传感 计算机科学 采样(信号处理) 超声波传感器 数据采集 人工智能 计算机视觉 声学 滤波器(信号处理) 操作系统 物理
作者
Soroosh Sabeti,Joel B. Harley
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:140: 106694-106694 被引量:19
标识
DOI:10.1016/j.ymssp.2020.106694
摘要

Many non-destructive evaluation techniques are based on the study and assessment of guided wavefields. Yet, the extent of the sensing region and the span of time over which wavefield data is acquired can be tremendous, resulting in an enormous amount of spatio-temporal data. As a result, reducing the burden of data acquisition and storage from undersampled data could be highly advantageous. To achieve this end, various signal processing methodologies have been proposed in the literature, many of which make use of compressive sensing. In prior work, such methodologies for effective wavefield reconstruction from incomplete data in space and in time (separately) have been demonstrated. In this paper, we combine these approaches. We present a compressive sensing based guided wave retrieval method with a two-dimensional ultrasonic guided wave model, which enables us to reconstruct wavefields that are undersampled in both the temporal and spatial domains. Results from implementing this method on a dataset consisting of experimental guided wave propagation indicate its potential for accurate wave reconstruction in the presence of spatio-temporal undersampling. We compare results for a variety of subsampling strategies and study the impact of sparsity on the reconstruction performance. Our results indicate that the proposed methodology in this paper is capable of achieving an accuracy of more than 80 percent (in terms of correlation coefficient) at a spatio-temporal undersampling ratio of about 40 percent using random sampling in space and time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangjing发布了新的文献求助10
刚刚
rosexu发布了新的文献求助10
刚刚
盘尼西林发布了新的文献求助10
1秒前
科研通AI2S应助我是125采纳,获得10
1秒前
李健的小迷弟应助arkamar采纳,获得10
2秒前
Xiaoxiao完成签到,获得积分10
2秒前
cilan发布了新的文献求助10
2秒前
SciGPT应助William鉴哲采纳,获得10
2秒前
3秒前
咩咩完成签到,获得积分20
4秒前
合一海盗应助wtg采纳,获得200
4秒前
4秒前
Grayball应助ccc采纳,获得10
4秒前
bkagyin应助猪猪hero采纳,获得10
5秒前
5秒前
科研通AI5应助顺利毕业采纳,获得10
6秒前
领导范儿应助spray采纳,获得30
6秒前
6秒前
长风完成签到,获得积分10
7秒前
8秒前
吴岳发布了新的文献求助10
8秒前
科研通AI2S应助我是125采纳,获得10
9秒前
涛涛完成签到,获得积分10
9秒前
轩辕德地发布了新的文献求助10
10秒前
科研通AI2S应助jidou1011采纳,获得10
10秒前
魔幻的妖丽完成签到 ,获得积分10
11秒前
黄晓杰2024完成签到,获得积分10
12秒前
枫叶完成签到,获得积分10
13秒前
13秒前
14秒前
小二郎应助虚心盼晴采纳,获得10
14秒前
俊逸的盛男完成签到 ,获得积分10
14秒前
16秒前
脑洞疼应助枫叶采纳,获得10
17秒前
17秒前
Gyrate完成签到,获得积分10
18秒前
李李发布了新的文献求助50
18秒前
dashi完成签到 ,获得积分10
18秒前
无花果应助一天八杯水采纳,获得10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808