Spatio-temporal undersampling: Recovering ultrasonic guided wavefields from incomplete data with compressive sensing

欠采样 压缩传感 计算机科学 采样(信号处理) 超声波传感器 数据采集 人工智能 计算机视觉 声学 滤波器(信号处理) 操作系统 物理
作者
Soroosh Sabeti,Joel B. Harley
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:140: 106694-106694 被引量:19
标识
DOI:10.1016/j.ymssp.2020.106694
摘要

Many non-destructive evaluation techniques are based on the study and assessment of guided wavefields. Yet, the extent of the sensing region and the span of time over which wavefield data is acquired can be tremendous, resulting in an enormous amount of spatio-temporal data. As a result, reducing the burden of data acquisition and storage from undersampled data could be highly advantageous. To achieve this end, various signal processing methodologies have been proposed in the literature, many of which make use of compressive sensing. In prior work, such methodologies for effective wavefield reconstruction from incomplete data in space and in time (separately) have been demonstrated. In this paper, we combine these approaches. We present a compressive sensing based guided wave retrieval method with a two-dimensional ultrasonic guided wave model, which enables us to reconstruct wavefields that are undersampled in both the temporal and spatial domains. Results from implementing this method on a dataset consisting of experimental guided wave propagation indicate its potential for accurate wave reconstruction in the presence of spatio-temporal undersampling. We compare results for a variety of subsampling strategies and study the impact of sparsity on the reconstruction performance. Our results indicate that the proposed methodology in this paper is capable of achieving an accuracy of more than 80 percent (in terms of correlation coefficient) at a spatio-temporal undersampling ratio of about 40 percent using random sampling in space and time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuhen完成签到,获得积分10
4秒前
5秒前
jackson发布了新的文献求助10
5秒前
1111完成签到,获得积分10
5秒前
6秒前
124332发布了新的文献求助50
7秒前
7秒前
Roy1998完成签到 ,获得积分10
10秒前
神可馨完成签到 ,获得积分10
11秒前
jmchen发布了新的文献求助10
11秒前
12秒前
Dasiy发布了新的文献求助10
12秒前
Catalysis123发布了新的文献求助30
13秒前
JCX完成签到,获得积分20
14秒前
坚强的紫菜关注了科研通微信公众号
14秒前
pphu完成签到 ,获得积分10
14秒前
chaoshen完成签到,获得积分10
16秒前
orixero应助Edison采纳,获得10
16秒前
好吃马匹发布了新的文献求助10
17秒前
东方立轩发布了新的文献求助10
18秒前
jmchen完成签到,获得积分10
20秒前
22秒前
Lucas应助JCX采纳,获得10
22秒前
Bing发布了新的文献求助10
23秒前
lulu828完成签到,获得积分10
24秒前
东方立轩完成签到,获得积分10
25秒前
李浩完成签到 ,获得积分10
26秒前
27秒前
爆米花应助zhangfuchao采纳,获得10
27秒前
hugeyoung完成签到,获得积分10
27秒前
子非鱼发布了新的文献求助10
28秒前
王ccccc完成签到,获得积分10
30秒前
星辰大海应助milkdrink采纳,获得10
33秒前
Novice6354完成签到 ,获得积分10
34秒前
DJ想吃饭了完成签到,获得积分10
34秒前
35秒前
丘比特应助子非鱼采纳,获得10
36秒前
36秒前
松哥发布了新的文献求助10
37秒前
乐乐应助无问采纳,获得10
38秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270487
求助须知:如何正确求助?哪些是违规求助? 2909871
关于积分的说明 8351344
捐赠科研通 2580345
什么是DOI,文献DOI怎么找? 1403446
科研通“疑难数据库(出版商)”最低求助积分说明 655729
邀请新用户注册赠送积分活动 635133