A Simulation-Based Optimization Approach for Reliability-Aware Service Composition in Edge Computing

计算机科学 云计算 边缘计算 分布式计算 可靠性(半导体) GSM演进的增强数据速率 灵活性(工程) 服务(商务) 人工智能 经济 经济 功率(物理) 物理 操作系统 统计 量子力学 数学
作者
Jiwei Huang,Jingyu Liang,Sikandar Ali
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 50355-50366 被引量:27
标识
DOI:10.1109/access.2020.2979970
摘要

With the prevalence of Internet of Things (IoT), edge computing has emerged as a novel computing model for optimizing traditional cloud computing systems by moving part of the computational tasks to the edge of the network for better performance and security. With the technique of services computing, edge computing systems can accommodate the application requirements with more agility and flexibility. In large-scale edge computing systems, service composition as one of the most important problems in services computing suffers from several new challenges, i.e., complex layered architecture, failures and recoveries always in the lifecycle, and search space explosion. In this paper, we make an attempt at addressing these challenges by designing a simulation-based optimization approach for reliability-aware service composition. Composite stochastic Petri net models are proposed for formulating the dynamics of multi-layered edge computing systems, and their corresponding quantitative analysis is conducted. To solve the state explosion problem in large-scale systems or complex service processes, time scale decomposition technique is applied to improving the efficiency of model solving. Additionally, simulation schemes are designed for performance evaluation and optimization, and ordinal optimization technique is introduced to significantly reduce the size of the search space. Finally, we conduct experiments based on real-life data, and the empirical results validate the efficacy of the approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助与非采纳,获得10
刚刚
七点半发布了新的文献求助10
刚刚
跳跃的凌文完成签到 ,获得积分10
刚刚
领导范儿应助桶装乐事采纳,获得10
刚刚
慕青应助Estrella采纳,获得10
刚刚
1秒前
一一应助阿峰采纳,获得10
1秒前
2秒前
2秒前
lj完成签到,获得积分10
2秒前
2秒前
BowieHuang应助566采纳,获得10
2秒前
大模型应助迷你的醉薇采纳,获得10
3秒前
jjjincc完成签到,获得积分10
4秒前
领导范儿应助Honahlee采纳,获得10
4秒前
Harssi发布了新的文献求助10
4秒前
5秒前
可爱的函函应助文房四宝采纳,获得10
5秒前
Ovo完成签到,获得积分20
5秒前
5秒前
zkygmu发布了新的文献求助10
5秒前
lio发布了新的文献求助50
5秒前
怕孤单的丁真完成签到,获得积分10
5秒前
6秒前
7秒前
苹果涵蕾发布了新的文献求助10
7秒前
大力的问蕊完成签到,获得积分10
7秒前
10秒前
破碎时间完成签到 ,获得积分10
10秒前
阔达如松发布了新的文献求助10
10秒前
Orange应助默默采纳,获得10
10秒前
10秒前
10秒前
GDN完成签到 ,获得积分10
10秒前
哥哥完成签到,获得积分10
11秒前
hwyk发布了新的文献求助10
12秒前
12秒前
蒋若风发布了新的文献求助10
12秒前
amanda应助张益发采纳,获得20
12秒前
cx_008完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836