A Simulation-Based Optimization Approach for Reliability-Aware Service Composition in Edge Computing

计算机科学 云计算 边缘计算 分布式计算 可靠性(半导体) GSM演进的增强数据速率 灵活性(工程) 最优化问题 人工智能 算法 数学 量子力学 统计 操作系统 物理 功率(物理)
作者
Jiwei Huang,Jingyu Liang,Sikandar Ali
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 50355-50366 被引量:21
标识
DOI:10.1109/access.2020.2979970
摘要

With the prevalence of Internet of Things (IoT), edge computing has emerged as a novel computing model for optimizing traditional cloud computing systems by moving part of the computational tasks to the edge of the network for better performance and security. With the technique of services computing, edge computing systems can accommodate the application requirements with more agility and flexibility. In large-scale edge computing systems, service composition as one of the most important problems in services computing suffers from several new challenges, i.e., complex layered architecture, failures and recoveries always in the lifecycle, and search space explosion. In this paper, we make an attempt at addressing these challenges by designing a simulation-based optimization approach for reliability-aware service composition. Composite stochastic Petri net models are proposed for formulating the dynamics of multi-layered edge computing systems, and their corresponding quantitative analysis is conducted. To solve the state explosion problem in large-scale systems or complex service processes, time scale decomposition technique is applied to improving the efficiency of model solving. Additionally, simulation schemes are designed for performance evaluation and optimization, and ordinal optimization technique is introduced to significantly reduce the size of the search space. Finally, we conduct experiments based on real-life data, and the empirical results validate the efficacy of the approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钱多多完成签到,获得积分10
刚刚
baekhyun完成签到,获得积分20
刚刚
刚刚
dpp发布了新的文献求助10
刚刚
今今完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
打打应助无情的白桃采纳,获得10
2秒前
香蕉觅云应助与光同晨采纳,获得10
3秒前
3秒前
小蘑菇应助clm采纳,获得10
3秒前
yhnsag完成签到,获得积分10
3秒前
Lin完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
Rain发布了新的文献求助10
5秒前
butiflow完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
务实的唇膏完成签到,获得积分10
6秒前
Will完成签到,获得积分10
6秒前
6秒前
Micky完成签到,获得积分10
6秒前
ape发布了新的文献求助10
6秒前
十七发布了新的文献求助10
7秒前
gyt发布了新的文献求助10
7秒前
时尚战斗机完成签到,获得积分10
7秒前
7秒前
华安发布了新的文献求助30
8秒前
8秒前
迟大猫应助dpp采纳,获得10
8秒前
9秒前
astral完成签到,获得积分10
9秒前
科研通AI5应助HJJHJH采纳,获得30
10秒前
Isabel发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762