Model-Based Reinforcement Learning Variable Impedance Control for Human-Robot Collaboration

机器人 强化学习 工程类 阻抗控制 人机交互 控制工程 灵活性(工程) 控制理论(社会学) 人工智能 计算机科学 模拟 控制器(灌溉) 控制(管理) 统计 农学 生物 数学
作者
Loris Roveda,Jeyhoon Maskani,Paolo Franceschi,Arash Abdi,Francesco Braghin,Lorenzo Molinari Tosatti,Nicola Pedrocchi
出处
期刊:Journal of Intelligent and Robotic Systems [Springer Nature]
卷期号:100 (2): 417-433 被引量:107
标识
DOI:10.1007/s10846-020-01183-3
摘要

Industry 4.0 is taking human-robot collaboration at the center of the production environment. Collaborative robots enhance productivity and flexibility while reducing human’s fatigue and the risk of injuries, exploiting advanced control methodologies. However, there is a lack of real-time model-based controllers accounting for the complex human-robot interaction dynamics. With this aim, this paper proposes a Model-Based Reinforcement Learning (MBRL) variable impedance controller to assist human operators in collaborative tasks. More in details, an ensemble of Artificial Neural Networks (ANNs) is used to learn a human-robot interaction dynamic model, capturing uncertainties. Such a learned model is kept updated during collaborative tasks execution. In addition, the learned model is used by a Model Predictive Controller (MPC) with Cross-Entropy Method (CEM). The aim of the MPC+CEM is to online optimize the stiffness and damping impedance control parameters minimizing the human effort (i.e, minimizing the human-robot interaction forces). The proposed approach has been validated through an experimental procedure. A lifting task has been considered as the reference validation application (weight of the manipulated part: 10 kg unknown to the robot controller). A KUKA LBR iiwa 14 R820 has been used as a test platform. Qualitative performance (i.e, questionnaire on perceived collaboration) have been evaluated. Achieved results have been compared with previous developed offline model-free optimized controllers and with the robot manual guidance controller. The proposed MBRL variable impedance controller shows improved human-robot collaboration. The proposed controller is capable to actively assist the human in the target task, compensating for the unknown part weight. The human-robot interaction dynamic model has been trained with a few initial experiments (30 initial experiments). In addition, the possibility to keep the learning of the human-robot interaction dynamics active allows accounting for the adaptation of human motor system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
empty发布了新的文献求助10
刚刚
英俊一刀发布了新的文献求助10
刚刚
小古发布了新的文献求助10
刚刚
Zzz发布了新的文献求助10
刚刚
枫花雪发布了新的文献求助10
刚刚
Oblivion发布了新的文献求助10
刚刚
科研通AI2S应助ZQC采纳,获得10
1秒前
Orange应助时差采纳,获得10
1秒前
1秒前
完美世界应助害羞的水杯采纳,获得10
1秒前
guoer完成签到,获得积分10
1秒前
十七完成签到,获得积分10
2秒前
2秒前
普普完成签到,获得积分10
2秒前
Arthur发布了新的文献求助10
2秒前
山雀完成签到,获得积分10
4秒前
yi发布了新的文献求助10
4秒前
贪玩路灯完成签到 ,获得积分10
4秒前
Arthur发布了新的文献求助10
4秒前
4秒前
Arthur发布了新的文献求助10
4秒前
Arthur发布了新的文献求助10
4秒前
Arthur发布了新的文献求助10
4秒前
Arthur发布了新的文献求助10
4秒前
Arthur发布了新的文献求助10
4秒前
Arthur发布了新的文献求助10
4秒前
4秒前
阿橘完成签到,获得积分10
5秒前
6秒前
zcz完成签到,获得积分10
6秒前
boleyn发布了新的文献求助10
6秒前
6秒前
6秒前
桃宝儿完成签到,获得积分10
6秒前
6秒前
6秒前
丘比特应助杭紫雪采纳,获得10
7秒前
深海鳕鱼完成签到,获得积分10
7秒前
弈心发布了新的文献求助10
7秒前
嗒嗒嗒薇完成签到 ,获得积分10
8秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303998
求助须知:如何正确求助?哪些是违规求助? 2938076
关于积分的说明 8486509
捐赠科研通 2612165
什么是DOI,文献DOI怎么找? 1426512
科研通“疑难数据库(出版商)”最低求助积分说明 662691
邀请新用户注册赠送积分活动 647276