期刊:Science of Advanced Materials [American Scientific Publishers] 日期:2020-06-01卷期号:12 (6): 908-914被引量:21
标识
DOI:10.1166/sam.2020.3766
摘要
Herein, NO x , i.e., nitric oxide (NO) and nitrogen dioxide (NO 2 ), gas sensors were fabricated using iron (Fe)-doped ZnO nanoparticles prepared via the facile hydrothermal process. The synthesized Fe-doped ZnO nanoparticles were analyzed through several techniques that revealed the well-crystallinity and dense growth of nanoparticles with the typical diameters of 25 ± 5 nm. The synthesized nanoparticles were utilized as a prospective material for the fabrication of NO x gas sensors operating at different temperatures, i.e., 350 °C, 400 °C, and 450 °C. The detailed sensing performances revealed that the optimum and most suitable sensing temperature for the fabricated sensors is 400 °C. In presence of 10 ppm NO gas, the fabricated sensor exhibited the highest gas response of 1.35 with a response ( t response ) and recovery ( t recovery ) time of 44 s and 402 s, respectively. Similarly, the fabricated NO 2 gas sensor, in presence of 10 ppm gas shows the highest gas response of 1.33 with a response and recovery times of 50 s and 281 s, respectively. The presented results demonstrate that Fe-doped ZnO nanomaterials are capable to fabricate efficient NO x gas sensors.