Psychometric and machine learning approaches for diagnostic assessment and tests of individual classification.

机器学习 人工智能 答辩人 背景(考古学) 心理测量学 逻辑回归 项目反应理论 随机森林 心理学 心理信息 计算机科学 临床心理学 梅德林 古生物学 生物 法学 政治学
作者
Oscar González
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:26 (2): 236-254 被引量:28
标识
DOI:10.1037/met0000317
摘要

Assessments are commonly used to make a decision about an individual, such as grade placement, treatment assignment, job selection, or to inform a diagnosis. A psychometric approach to classify respondents based on the assessment would aggregate items into a score, and then each respondent's score is compared to a cut score. In contrast, a machine learning approach to classify respondents would build a model to predict the probability of belonging to a specific class from assessment items, and then respondents are classified based on their predicted probability of belonging to that class. It remains unclear whether psychometric and machine learning methods have comparable classification accuracy or if 1 method is preferable in all or some situations. In the context of diagnostic assessment, this study used Monte Carlo simulation methods to compare the classification accuracy of psychometric and machine learning methods as a function of the diagnosis-test correlation, prevalence, sample size, and the structure of the diagnostic assessment. Results suggest that machine learning models using logistic regression or random forest could have comparable classification accuracy to the psychometric methods using estimated item response theory scores. Therefore, machine learning models could provide a viable alternative for classification when psychometric methods are not feasible. Methods are illustrated with an empirical example predicting an oppositional defiant disorder diagnosis from a behavior disorders scale in children of age seven. Strengths and limitations for each of the methods are examined, and the overlap between the field of machine learning and psychometrics is discussed. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
搜集达人应助chens627采纳,获得10
3秒前
开心叫兽完成签到 ,获得积分10
4秒前
6秒前
FoxLY完成签到,获得积分10
7秒前
7秒前
Caddie发布了新的文献求助10
8秒前
幽魂完成签到,获得积分0
8秒前
ZXH发布了新的文献求助10
9秒前
10秒前
66完成签到 ,获得积分10
10秒前
肉卷完成签到 ,获得积分10
11秒前
脑洞疼应助FoxLY采纳,获得10
11秒前
青山发布了新的文献求助10
11秒前
15秒前
沙之聚完成签到,获得积分10
16秒前
guyuangyy发布了新的文献求助10
16秒前
ashore发布了新的文献求助10
18秒前
18秒前
monere发布了新的文献求助30
18秒前
hanyue完成签到,获得积分10
19秒前
雨安应助偏偏海采纳,获得10
20秒前
甜美冷雁完成签到,获得积分10
20秒前
im红牛发布了新的文献求助10
20秒前
今后应助FANYH采纳,获得20
21秒前
21秒前
英俊的铭应助jl采纳,获得10
21秒前
21秒前
22秒前
24秒前
Xiwen发布了新的文献求助10
24秒前
喷泡的兔子完成签到,获得积分10
25秒前
25秒前
佐治完成签到,获得积分20
26秒前
26秒前
Larrin发布了新的文献求助10
27秒前
大模型应助锦尘采纳,获得10
27秒前
汉堡包应助科研吗喽采纳,获得10
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258508
求助须知:如何正确求助?哪些是违规求助? 2900361
关于积分的说明 8309903
捐赠科研通 2569594
什么是DOI,文献DOI怎么找? 1395833
科研通“疑难数据库(出版商)”最低求助积分说明 653314
邀请新用户注册赠送积分活动 631201