Psychometric and machine learning approaches for diagnostic assessment and tests of individual classification.

机器学习 人工智能 答辩人 背景(考古学) 心理测量学 逻辑回归 项目反应理论 随机森林 心理学 心理信息 计算机科学 临床心理学 梅德林 古生物学 生物 法学 政治学
作者
Oscar González
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:26 (2): 236-254 被引量:32
标识
DOI:10.1037/met0000317
摘要

Assessments are commonly used to make a decision about an individual, such as grade placement, treatment assignment, job selection, or to inform a diagnosis. A psychometric approach to classify respondents based on the assessment would aggregate items into a score, and then each respondent's score is compared to a cut score. In contrast, a machine learning approach to classify respondents would build a model to predict the probability of belonging to a specific class from assessment items, and then respondents are classified based on their predicted probability of belonging to that class. It remains unclear whether psychometric and machine learning methods have comparable classification accuracy or if 1 method is preferable in all or some situations. In the context of diagnostic assessment, this study used Monte Carlo simulation methods to compare the classification accuracy of psychometric and machine learning methods as a function of the diagnosis-test correlation, prevalence, sample size, and the structure of the diagnostic assessment. Results suggest that machine learning models using logistic regression or random forest could have comparable classification accuracy to the psychometric methods using estimated item response theory scores. Therefore, machine learning models could provide a viable alternative for classification when psychometric methods are not feasible. Methods are illustrated with an empirical example predicting an oppositional defiant disorder diagnosis from a behavior disorders scale in children of age seven. Strengths and limitations for each of the methods are examined, and the overlap between the field of machine learning and psychometrics is discussed. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Lee完成签到 ,获得积分10
1秒前
1秒前
钱小二发布了新的文献求助10
2秒前
2秒前
315947完成签到,获得积分10
2秒前
3秒前
冰阔落发布了新的文献求助10
3秒前
鳐鱼完成签到,获得积分10
3秒前
哈哈哈完成签到,获得积分10
3秒前
李健的小迷弟应助egnaro采纳,获得30
3秒前
没什么是看文献解决不了的完成签到,获得积分10
4秒前
害怕的凡英完成签到,获得积分10
4秒前
收集快乐发布了新的文献求助10
4秒前
青云发布了新的文献求助10
5秒前
可可完成签到 ,获得积分10
5秒前
Dank1ng完成签到,获得积分10
5秒前
星辰大海应助rinki01采纳,获得10
5秒前
哈哈哈发布了新的文献求助10
6秒前
活泼的南风完成签到 ,获得积分10
6秒前
T拐拐发布了新的文献求助10
7秒前
慕青应助yannnis采纳,获得10
7秒前
上官若男应助明明采纳,获得10
7秒前
上官若男应助过意采纳,获得10
7秒前
qly发布了新的文献求助10
7秒前
wangyalei发布了新的文献求助10
8秒前
孙福禄应助void科学家采纳,获得10
8秒前
逝者如斯只是看着完成签到,获得积分10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
ding应助轻歌水越采纳,获得10
11秒前
ding应助12334采纳,获得10
12秒前
kk完成签到 ,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600