Psychometric and machine learning approaches for diagnostic assessment and tests of individual classification.

机器学习 人工智能 答辩人 背景(考古学) 心理测量学 逻辑回归 项目反应理论 随机森林 心理学 心理信息 计算机科学 临床心理学 梅德林 古生物学 生物 法学 政治学
作者
Oscar González
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:26 (2): 236-254 被引量:36
标识
DOI:10.1037/met0000317
摘要

Assessments are commonly used to make a decision about an individual, such as grade placement, treatment assignment, job selection, or to inform a diagnosis. A psychometric approach to classify respondents based on the assessment would aggregate items into a score, and then each respondent's score is compared to a cut score. In contrast, a machine learning approach to classify respondents would build a model to predict the probability of belonging to a specific class from assessment items, and then respondents are classified based on their predicted probability of belonging to that class. It remains unclear whether psychometric and machine learning methods have comparable classification accuracy or if 1 method is preferable in all or some situations. In the context of diagnostic assessment, this study used Monte Carlo simulation methods to compare the classification accuracy of psychometric and machine learning methods as a function of the diagnosis-test correlation, prevalence, sample size, and the structure of the diagnostic assessment. Results suggest that machine learning models using logistic regression or random forest could have comparable classification accuracy to the psychometric methods using estimated item response theory scores. Therefore, machine learning models could provide a viable alternative for classification when psychometric methods are not feasible. Methods are illustrated with an empirical example predicting an oppositional defiant disorder diagnosis from a behavior disorders scale in children of age seven. Strengths and limitations for each of the methods are examined, and the overlap between the field of machine learning and psychometrics is discussed. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Foch发布了新的文献求助10
1秒前
111发布了新的文献求助10
2秒前
charlie发布了新的文献求助10
3秒前
ALU完成签到 ,获得积分10
3秒前
科研通AI6应助cjc采纳,获得10
5秒前
8秒前
Liana_Liu完成签到,获得积分10
8秒前
爆米花应助111采纳,获得10
10秒前
阿卓西完成签到,获得积分10
13秒前
13秒前
Jasper应助激动的寻真采纳,获得50
13秒前
贝妮完成签到,获得积分10
14秒前
15秒前
16秒前
彭于晏应助Angelina采纳,获得30
17秒前
simon发布了新的文献求助10
18秒前
弓长广发完成签到,获得积分10
19秒前
吴老师完成签到 ,获得积分10
19秒前
慕青应助charlie采纳,获得10
19秒前
卷卷发布了新的文献求助10
21秒前
22秒前
郑嘻嘻完成签到,获得积分10
23秒前
小蘑菇应助vader采纳,获得10
24秒前
朴素亦绿完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
HHHHH发布了新的文献求助50
25秒前
自然的代亦完成签到,获得积分10
25秒前
ccyyhh完成签到 ,获得积分10
26秒前
现代的芙蓉完成签到,获得积分10
27秒前
28秒前
simon完成签到,获得积分10
28秒前
李健的小迷弟应助yooo采纳,获得10
29秒前
袁庚完成签到 ,获得积分10
29秒前
Breeze完成签到 ,获得积分10
30秒前
30秒前
乐乐应助陈秋采纳,获得10
33秒前
撒旦asd发布了新的文献求助10
33秒前
小胡完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
38秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586355
求助须知:如何正确求助?哪些是违规求助? 4669641
关于积分的说明 14779348
捐赠科研通 4619773
什么是DOI,文献DOI怎么找? 2530860
邀请新用户注册赠送积分活动 1499668
关于科研通互助平台的介绍 1467830