An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges

高光谱成像 计算机科学 空间分析 像素 特征提取 特征(语言学) 分割 支持向量机 融合 模式识别(心理学) 核(代数) 人工智能 遥感 计算机视觉 数学 地理 哲学 组合数学 语言学
作者
Maryam Imani,Hassan Ghassemian
出处
期刊:Information Fusion [Elsevier]
卷期号:59: 59-83 被引量:217
标识
DOI:10.1016/j.inffus.2020.01.007
摘要

• A review of spectral-spatial fusion methods for hyperspectral images is presented. • Fusion methods are divided into segmentation based, feature fusion, decision fusion. • Object based methods and pixel wise ones are discussed in segmentation based fusion. • 3D feature extraction and deep learning are discussed in feature fusion. • Various complement classification methods are discussed in decision fusion. Hyperspectral images (HSIs) have a cube form containing spatial information in two dimensions and rich spectral information in the third one. The high volume of spectral bands allows discrimination between various materials with high details. Moreover, by utilizing the spatial features of image such as shape, texture and geometrical structures, the land cover discrimination will be improved. So, fusion of spectral and spatial information can significantly improve the HSI classification. In this work, the spectral-spatial information fusion methods are categorized into three main groups. The first group contains segmentation based methods where objects or super-pixels are used instead of pixels for classification or the obtained segmentation map is used for relaxation of the pixel-wise classification map. The second group consists of feature fusion methods which are divided into six sub-groups: features stacking, joint spectral-spatial feature extraction, kernel based classifiers, representation based classifiers, 3D spectral-spatial feature extraction and deep learning based classifiers. The third fusion methods are decision fusion based approaches where complementary information of several classifiers are contributed for achieving the final classification map. A review of different methods in each category, is presented. Moreover, the advantages and difficulties/disadvantages of each group are discussed. The performance of various fusion methods are assessed in terms of classification accuracy and running time using experiments on three popular hyperspectral images. The results show that the feature fusion methods although are time consuming but can provide superior classification accuracy compared to other methods. Study of this work can be very useful for all researchers interested in HSI feature extraction, fusion and classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
木槿发布了新的文献求助10
2秒前
向南发布了新的文献求助10
4秒前
Tian完成签到,获得积分10
5秒前
兴奋的定帮完成签到 ,获得积分10
7秒前
9秒前
无花果应助司空豁采纳,获得10
10秒前
seedcui完成签到,获得积分10
11秒前
魔芋达人完成签到,获得积分10
11秒前
12秒前
吡咯爱成环应助olofmeister采纳,获得10
13秒前
苯二氮卓完成签到,获得积分10
14秒前
good_boy完成签到,获得积分10
15秒前
17秒前
IROL发布了新的文献求助10
18秒前
魔芋达人发布了新的文献求助10
18秒前
周游完成签到,获得积分20
19秒前
19秒前
FashionBoy应助小中采纳,获得10
21秒前
hhhzzy完成签到 ,获得积分10
22秒前
23秒前
Lucas应助文献求助采纳,获得10
24秒前
lll发布了新的文献求助10
27秒前
科研通AI2S应助枯萎的蓝天采纳,获得10
28秒前
curious完成签到,获得积分10
30秒前
yulia完成签到 ,获得积分10
31秒前
周游发布了新的文献求助10
32秒前
咖啡头发完成签到,获得积分10
33秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416294
求助须知:如何正确求助?哪些是违规求助? 3018217
关于积分的说明 8883350
捐赠科研通 2705583
什么是DOI,文献DOI怎么找? 1483717
科研通“疑难数据库(出版商)”最低求助积分说明 685787
邀请新用户注册赠送积分活动 680931