An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges

高光谱成像 计算机科学 空间分析 像素 特征提取 特征(语言学) 分割 支持向量机 融合 模式识别(心理学) 核(代数) 人工智能 遥感 计算机视觉 数学 地理 哲学 组合数学 语言学
作者
Maryam Imani,Hassan Ghassemian
出处
期刊:Information Fusion [Elsevier]
卷期号:59: 59-83 被引量:247
标识
DOI:10.1016/j.inffus.2020.01.007
摘要

• A review of spectral-spatial fusion methods for hyperspectral images is presented. • Fusion methods are divided into segmentation based, feature fusion, decision fusion. • Object based methods and pixel wise ones are discussed in segmentation based fusion. • 3D feature extraction and deep learning are discussed in feature fusion. • Various complement classification methods are discussed in decision fusion. Hyperspectral images (HSIs) have a cube form containing spatial information in two dimensions and rich spectral information in the third one. The high volume of spectral bands allows discrimination between various materials with high details. Moreover, by utilizing the spatial features of image such as shape, texture and geometrical structures, the land cover discrimination will be improved. So, fusion of spectral and spatial information can significantly improve the HSI classification. In this work, the spectral-spatial information fusion methods are categorized into three main groups. The first group contains segmentation based methods where objects or super-pixels are used instead of pixels for classification or the obtained segmentation map is used for relaxation of the pixel-wise classification map. The second group consists of feature fusion methods which are divided into six sub-groups: features stacking, joint spectral-spatial feature extraction, kernel based classifiers, representation based classifiers, 3D spectral-spatial feature extraction and deep learning based classifiers. The third fusion methods are decision fusion based approaches where complementary information of several classifiers are contributed for achieving the final classification map. A review of different methods in each category, is presented. Moreover, the advantages and difficulties/disadvantages of each group are discussed. The performance of various fusion methods are assessed in terms of classification accuracy and running time using experiments on three popular hyperspectral images. The results show that the feature fusion methods although are time consuming but can provide superior classification accuracy compared to other methods. Study of this work can be very useful for all researchers interested in HSI feature extraction, fusion and classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nov发布了新的文献求助10
刚刚
panpan完成签到,获得积分10
刚刚
迷路小丸子完成签到,获得积分10
1秒前
山山而川发布了新的文献求助10
2秒前
tumankol发布了新的文献求助10
2秒前
华仔应助Shirky采纳,获得20
2秒前
3秒前
Wen完成签到,获得积分10
3秒前
胡泽莉完成签到,获得积分10
4秒前
vae完成签到,获得积分10
4秒前
香蕉觅云应助梦露采纳,获得10
4秒前
yuanyuan完成签到 ,获得积分10
5秒前
ypcsjj完成签到,获得积分10
5秒前
晫猗发布了新的文献求助10
7秒前
7秒前
江苏吴世勋完成签到,获得积分10
7秒前
Ava应助山山而川采纳,获得10
7秒前
8秒前
小马甲应助狂野妙菱采纳,获得10
8秒前
大龙哥886应助vae采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
跳跃的明雪完成签到 ,获得积分10
9秒前
9秒前
落寞依玉完成签到,获得积分10
9秒前
金子完成签到,获得积分10
11秒前
12秒前
风中尔蝶发布了新的文献求助30
12秒前
Fransic发布了新的文献求助10
12秒前
12秒前
JJlv完成签到,获得积分10
12秒前
CodeCraft应助团子采纳,获得10
13秒前
沙漠水手发布了新的文献求助10
13秒前
tinna完成签到,获得积分10
13秒前
小龙发布了新的文献求助40
14秒前
可爱的函函应助Nov采纳,获得10
15秒前
16秒前
17秒前
taipingyang完成签到,获得积分10
17秒前
安平发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660407
求助须知:如何正确求助?哪些是违规求助? 4833752
关于积分的说明 15090568
捐赠科研通 4819045
什么是DOI,文献DOI怎么找? 2578992
邀请新用户注册赠送积分活动 1533551
关于科研通互助平台的介绍 1492304