An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges

高光谱成像 计算机科学 空间分析 像素 特征提取 特征(语言学) 分割 支持向量机 融合 模式识别(心理学) 核(代数) 人工智能 遥感 计算机视觉 数学 地理 组合数学 哲学 语言学
作者
Maryam Imani,Hassan Ghassemian
出处
期刊:Information Fusion [Elsevier BV]
卷期号:59: 59-83 被引量:217
标识
DOI:10.1016/j.inffus.2020.01.007
摘要

• A review of spectral-spatial fusion methods for hyperspectral images is presented. • Fusion methods are divided into segmentation based, feature fusion, decision fusion. • Object based methods and pixel wise ones are discussed in segmentation based fusion. • 3D feature extraction and deep learning are discussed in feature fusion. • Various complement classification methods are discussed in decision fusion. Hyperspectral images (HSIs) have a cube form containing spatial information in two dimensions and rich spectral information in the third one. The high volume of spectral bands allows discrimination between various materials with high details. Moreover, by utilizing the spatial features of image such as shape, texture and geometrical structures, the land cover discrimination will be improved. So, fusion of spectral and spatial information can significantly improve the HSI classification. In this work, the spectral-spatial information fusion methods are categorized into three main groups. The first group contains segmentation based methods where objects or super-pixels are used instead of pixels for classification or the obtained segmentation map is used for relaxation of the pixel-wise classification map. The second group consists of feature fusion methods which are divided into six sub-groups: features stacking, joint spectral-spatial feature extraction, kernel based classifiers, representation based classifiers, 3D spectral-spatial feature extraction and deep learning based classifiers. The third fusion methods are decision fusion based approaches where complementary information of several classifiers are contributed for achieving the final classification map. A review of different methods in each category, is presented. Moreover, the advantages and difficulties/disadvantages of each group are discussed. The performance of various fusion methods are assessed in terms of classification accuracy and running time using experiments on three popular hyperspectral images. The results show that the feature fusion methods although are time consuming but can provide superior classification accuracy compared to other methods. Study of this work can be very useful for all researchers interested in HSI feature extraction, fusion and classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热的宛丝完成签到,获得积分10
1秒前
orixero应助万幸鹿采纳,获得10
1秒前
ww发布了新的文献求助10
1秒前
2秒前
俭朴士晋发布了新的文献求助10
2秒前
Youth应助masheng采纳,获得10
2秒前
2秒前
luu完成签到,获得积分10
3秒前
之_ZH完成签到 ,获得积分10
3秒前
深情的大碗完成签到 ,获得积分20
3秒前
啦啦啦完成签到,获得积分20
3秒前
XHY完成签到,获得积分10
3秒前
NexusExplorer应助酷酷的乐菱采纳,获得10
3秒前
acd完成签到,获得积分10
4秒前
4秒前
晨曦完成签到,获得积分10
4秒前
阳炎完成签到,获得积分10
5秒前
思念需要什么完成签到,获得积分10
5秒前
chen发布了新的文献求助10
5秒前
XHY发布了新的文献求助10
6秒前
啦啦啦发布了新的文献求助10
6秒前
学习中的呜哩哇啦完成签到,获得积分10
6秒前
6秒前
钰宁完成签到,获得积分10
7秒前
开心小猪完成签到,获得积分10
7秒前
钰小憨完成签到,获得积分10
7秒前
阔达的宝莹完成签到,获得积分10
7秒前
脑洞疼应助杨文志采纳,获得10
7秒前
李文龙完成签到,获得积分10
8秒前
能接受微辣完成签到,获得积分10
8秒前
8秒前
所所应助动听安筠采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
勤奋花瓣完成签到,获得积分10
10秒前
故意的秋烟完成签到 ,获得积分10
10秒前
Owen应助ww采纳,获得10
10秒前
阳炎发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479