Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data

计算机科学 卷积神经网络 深度学习 人工智能 机器学习 稳健性(进化) 循环神经网络 人工神经网络 多任务学习 模式识别(心理学) 任务(项目管理) 生物化学 基因 经济 化学 管理
作者
Shaker El–Sappagh,Tamer Abuhmed,S. M. Riazul Islam,Kyung Sup Kwak
出处
期刊:Neurocomputing [Elsevier]
卷期号:412: 197-215 被引量:174
标识
DOI:10.1016/j.neucom.2020.05.087
摘要

Early prediction of Alzheimer’s disease (AD) is crucial for delaying its progression. As a chronic disease, ignoring the temporal dimension of AD data affects the performance of a progression detection and medically unacceptable. Besides, AD patients are represented by heterogeneous, yet complementary, multimodalities. Multitask modeling improves progression-detection performance, robustness, and stability. However, multimodal multitask modeling has not been evaluated using time series and deep learning paradigm, especially for AD progression detection. In this paper, we propose a robust ensemble deep learning model based on a stacked convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM) network. This multimodal multitask model jointly predicts multiple variables based on the fusion of five types of multimodal time series data plus a set of background (BG) knowledge. Predicted variables include AD multiclass progression task, and four critical cognitive scores regression tasks. The proposed model extracts local and longitudinal features of each modality using a stacked CNN and BiLSTM network. Concurrently, local features are extracted from the BG data using a feed-forward neural network. Resultant features are fused to a deep network to detect common patterns which jointly used to predict the classification and regression tasks. To validate our model, we performed six experiments on five modalities from Alzheimer’s Disease Neuroimaging Initiative (ADNI) of 1536 subjects. The results of the proposed approach achieve state-of-the-art performance for both multiclass progression and regression tasks. Moreover, our approach can be generalized in other medial domains to analyze heterogeneous temporal data for predicting patient’s future status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辣辣完成签到,获得积分10
刚刚
刚刚
1秒前
芊泽。发布了新的文献求助10
2秒前
5秒前
李明涵发布了新的文献求助10
5秒前
Finger发布了新的文献求助30
6秒前
6秒前
7秒前
7秒前
7秒前
yu完成签到,获得积分10
7秒前
酷波er应助紧张的依丝采纳,获得10
8秒前
8秒前
YY完成签到 ,获得积分10
8秒前
9秒前
zzy关闭了zzy文献求助
9秒前
小轩窗zst发布了新的文献求助10
9秒前
羊羊发布了新的文献求助10
10秒前
11秒前
roclie发布了新的文献求助10
12秒前
13秒前
Ying完成签到,获得积分20
13秒前
14秒前
SYLH应助小轩窗zst采纳,获得10
15秒前
15秒前
咕噜完成签到 ,获得积分10
15秒前
可爱的函函应助Finger采纳,获得10
15秒前
传奇3应助汎影采纳,获得10
15秒前
weixn发布了新的文献求助10
16秒前
充电宝应助平淡的依白采纳,获得10
16秒前
温婉的大白菜真实的钥匙完成签到,获得积分20
16秒前
panhanfu发布了新的文献求助10
17秒前
了晨发布了新的文献求助10
17秒前
18秒前
dominate完成签到,获得积分10
19秒前
chen发布了新的文献求助10
20秒前
20秒前
赘婿应助紧张的依丝采纳,获得10
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512351
求助须知:如何正确求助?哪些是违规求助? 3094816
关于积分的说明 9224753
捐赠科研通 2789627
什么是DOI,文献DOI怎么找? 1530798
邀请新用户注册赠送积分活动 711122
科研通“疑难数据库(出版商)”最低求助积分说明 706586