催化作用
双金属片
贵金属
除氧
磷化氢
化学
产量(工程)
硬脂酸
材料科学
有机化学
冶金
作者
Zihao Zhang,Wenwen Lin,Yafei Li,Francis Okejiri,Yubing Lu,Jixing Liu,Hao Chen,Xiuyang Lü,Jie Fu
出处
期刊:Chemsuschem
[Wiley]
日期:2020-07-16
卷期号:13 (18): 4922-4928
被引量:17
标识
DOI:10.1002/cssc.202001356
摘要
Abstract Catalytic deoxygenation of even‐numbered fatty acids into odd‐chain linear α‐olefins (LAOs) has emerged as a complementary strategy to oligomerization of ethylene, which only affords even‐chain LAOs. Although enzymes and homogeneous catalysts have shown promising potential for this application, industrial production of LAOs through these catalytic systems is still very difficult to accomplish to date. A recent breakthrough involves the use of an expensive noble‐metal catalyst, Pd/C, through a phosphine ligands‐assisted method for LAOs production from fatty acid conversion. This study presents a unique, cost‐friendly, non‐noble bimetallic NiFe/C catalyst for highly selective LAOs production from fatty acids through decarbonylative dehydration. In the presence of acetic anhydride and phosphine ligand, a remarkable improvement in the yield of 1‐heptadecene from the conversion of stearic acid was found over the supported bimetallic catalyst (NiFe/C) as compared to corresponding monometallic counterparts (Ni/C and Fe/C). Through optimization of the reaction conditions, a 70.1 % heptadecene yield with selectivity to 1‐heptadecene as high as 92.8 % could be achieved over the bimetallic catalyst at just 190 °C. This unique bimetallic NiFe/C catalyst is composed of NiFe alloy in the material bulk phase and a surface mixture of NiFe alloy and oxidized NiFe δ+ species, which offer a synergized contribution towards decarbonylative dehydration of stearic acid for 1‐heptadecene production.
科研通智能强力驱动
Strongly Powered by AbleSci AI