Standing on the Shoulders of Giants: Hardware and Neural Architecture Co-Search with Hot Start

计算机科学 建筑 钥匙(锁) 现场可编程门阵列 延迟(音频) 人工神经网络 搜索算法 搜索引擎 计算机工程 人工智能 计算机体系结构 计算机硬件 操作系统 情报检索 算法 艺术 电信 视觉艺术
作者
Weiwen Jiang,Lei Yang,Sakyasingha Dasgupta,Jingtong Hu,Yiyu Shi
出处
期刊:Cornell University - arXiv 被引量:7
标识
DOI:10.48550/arxiv.2007.09087
摘要

Hardware and neural architecture co-search that automatically generates Artificial Intelligence (AI) solutions from a given dataset is promising to promote AI democratization; however, the amount of time that is required by current co-search frameworks is in the order of hundreds of GPU hours for one target hardware. This inhibits the use of such frameworks on commodity hardware. The root cause of the low efficiency in existing co-search frameworks is the fact that they start from a "cold" state (i.e., search from scratch). In this paper, we propose a novel framework, namely HotNAS, that starts from a "hot" state based on a set of existing pre-trained models (a.k.a. model zoo) to avoid lengthy training time. As such, the search time can be reduced from 200 GPU hours to less than 3 GPU hours. In HotNAS, in addition to hardware design space and neural architecture search space, we further integrate a compression space to conduct model compressing during the co-search, which creates new opportunities to reduce latency but also brings challenges. One of the key challenges is that all of the above search spaces are coupled with each other, e.g., compression may not work without hardware design support. To tackle this issue, HotNAS builds a chain of tools to design hardware to support compression, based on which a global optimizer is developed to automatically co-search all the involved search spaces. Experiments on ImageNet dataset and Xilinx FPGA show that, within the timing constraint of 5ms, neural architectures generated by HotNAS can achieve up to 5.79% Top-1 and 3.97% Top-5 accuracy gain, compared with the existing ones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助111采纳,获得10
1秒前
loser发布了新的文献求助10
1秒前
1秒前
斯文若之发布了新的文献求助10
1秒前
走四方发布了新的文献求助10
1秒前
Ava应助yxy采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
XQJ发布了新的文献求助10
4秒前
5秒前
CUI完成签到,获得积分10
5秒前
5秒前
5秒前
ikutovaya完成签到,获得积分10
5秒前
畅快安白发布了新的文献求助10
6秒前
SciGPT应助研友_8QxayZ采纳,获得10
6秒前
脑洞疼应助璐璐核桃露采纳,获得10
6秒前
ho发布了新的文献求助50
7秒前
7秒前
8秒前
8秒前
辛辛那提发布了新的文献求助10
8秒前
酷波er应助腼腆的缘分采纳,获得10
8秒前
9秒前
yeoyoo发布了新的文献求助10
9秒前
ChemNiko发布了新的文献求助10
9秒前
小丹完成签到 ,获得积分10
10秒前
桐桐应助体贴绮露采纳,获得10
10秒前
CUI发布了新的文献求助10
10秒前
糖豆豆发布了新的文献求助10
10秒前
10秒前
世界小奇完成签到,获得积分10
10秒前
小吉麻麻发布了新的文献求助10
11秒前
xx发布了新的文献求助10
11秒前
12秒前
魏泽洪完成签到,获得积分10
12秒前
XQJ完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624763
求助须知:如何正确求助?哪些是违规求助? 4710606
关于积分的说明 14951556
捐赠科研通 4778691
什么是DOI,文献DOI怎么找? 2553391
邀请新用户注册赠送积分活动 1515355
关于科研通互助平台的介绍 1475679