Standing on the Shoulders of Giants: Hardware and Neural Architecture Co-Search with Hot Start

计算机科学 建筑 钥匙(锁) 现场可编程门阵列 延迟(音频) 人工神经网络 搜索算法 搜索引擎 计算机工程 人工智能 计算机体系结构 计算机硬件 操作系统 情报检索 算法 艺术 电信 视觉艺术
作者
Weiwen Jiang,Lei Yang,Sakyasingha Dasgupta,Jingtong Hu,Yiyu Shi
出处
期刊:Cornell University - arXiv 被引量:7
标识
DOI:10.48550/arxiv.2007.09087
摘要

Hardware and neural architecture co-search that automatically generates Artificial Intelligence (AI) solutions from a given dataset is promising to promote AI democratization; however, the amount of time that is required by current co-search frameworks is in the order of hundreds of GPU hours for one target hardware. This inhibits the use of such frameworks on commodity hardware. The root cause of the low efficiency in existing co-search frameworks is the fact that they start from a "cold" state (i.e., search from scratch). In this paper, we propose a novel framework, namely HotNAS, that starts from a "hot" state based on a set of existing pre-trained models (a.k.a. model zoo) to avoid lengthy training time. As such, the search time can be reduced from 200 GPU hours to less than 3 GPU hours. In HotNAS, in addition to hardware design space and neural architecture search space, we further integrate a compression space to conduct model compressing during the co-search, which creates new opportunities to reduce latency but also brings challenges. One of the key challenges is that all of the above search spaces are coupled with each other, e.g., compression may not work without hardware design support. To tackle this issue, HotNAS builds a chain of tools to design hardware to support compression, based on which a global optimizer is developed to automatically co-search all the involved search spaces. Experiments on ImageNet dataset and Xilinx FPGA show that, within the timing constraint of 5ms, neural architectures generated by HotNAS can achieve up to 5.79% Top-1 and 3.97% Top-5 accuracy gain, compared with the existing ones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助摸鱼ing采纳,获得10
1秒前
abcdv发布了新的文献求助10
1秒前
1秒前
wind发布了新的文献求助10
2秒前
ELEGENCE完成签到,获得积分20
3秒前
3秒前
Ahan完成签到,获得积分10
3秒前
小7发布了新的文献求助30
4秒前
悦耳的海云完成签到,获得积分10
4秒前
4秒前
5秒前
陶醉代云完成签到,获得积分10
5秒前
邱老黑完成签到,获得积分20
5秒前
小圆发布了新的文献求助30
5秒前
lmy发布了新的文献求助10
6秒前
研友_楼悲完成签到,获得积分10
6秒前
ll完成签到 ,获得积分10
6秒前
研友_VZG7GZ应助lina采纳,获得10
7秒前
7秒前
7秒前
7秒前
果果完成签到,获得积分10
7秒前
欣欣发布了新的文献求助10
8秒前
RJ发布了新的文献求助10
8秒前
8秒前
华大01完成签到,获得积分10
8秒前
蓝色斑马发布了新的文献求助10
9秒前
麻果应助小慧儿采纳,获得10
9秒前
9秒前
CAOHOU应助邱老黑采纳,获得10
9秒前
斯文傲芙完成签到,获得积分10
10秒前
飞云发布了新的文献求助10
10秒前
abcdv完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
小咸鱼发布了新的文献求助10
11秒前
李小喵发布了新的文献求助10
11秒前
11秒前
FJ发布了新的文献求助10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961496
求助须知:如何正确求助?哪些是违规求助? 3507837
关于积分的说明 11138394
捐赠科研通 3240311
什么是DOI,文献DOI怎么找? 1790903
邀请新用户注册赠送积分活动 872636
科研通“疑难数据库(出版商)”最低求助积分说明 803288