Standing on the Shoulders of Giants: Hardware and Neural Architecture Co-Search with Hot Start

计算机科学 建筑 钥匙(锁) 现场可编程门阵列 延迟(音频) 人工神经网络 搜索算法 搜索引擎 计算机工程 人工智能 计算机体系结构 计算机硬件 操作系统 情报检索 算法 艺术 电信 视觉艺术
作者
Weiwen Jiang,Lei Yang,Sakyasingha Dasgupta,Jingtong Hu,Yiyu Shi
出处
期刊:Cornell University - arXiv 被引量:7
标识
DOI:10.48550/arxiv.2007.09087
摘要

Hardware and neural architecture co-search that automatically generates Artificial Intelligence (AI) solutions from a given dataset is promising to promote AI democratization; however, the amount of time that is required by current co-search frameworks is in the order of hundreds of GPU hours for one target hardware. This inhibits the use of such frameworks on commodity hardware. The root cause of the low efficiency in existing co-search frameworks is the fact that they start from a "cold" state (i.e., search from scratch). In this paper, we propose a novel framework, namely HotNAS, that starts from a "hot" state based on a set of existing pre-trained models (a.k.a. model zoo) to avoid lengthy training time. As such, the search time can be reduced from 200 GPU hours to less than 3 GPU hours. In HotNAS, in addition to hardware design space and neural architecture search space, we further integrate a compression space to conduct model compressing during the co-search, which creates new opportunities to reduce latency but also brings challenges. One of the key challenges is that all of the above search spaces are coupled with each other, e.g., compression may not work without hardware design support. To tackle this issue, HotNAS builds a chain of tools to design hardware to support compression, based on which a global optimizer is developed to automatically co-search all the involved search spaces. Experiments on ImageNet dataset and Xilinx FPGA show that, within the timing constraint of 5ms, neural architectures generated by HotNAS can achieve up to 5.79% Top-1 and 3.97% Top-5 accuracy gain, compared with the existing ones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
拼搏耷发布了新的文献求助10
2秒前
充电宝应助柠檬气泡饮采纳,获得10
3秒前
3秒前
Aryac发布了新的文献求助10
5秒前
6秒前
吾身无拘发布了新的文献求助30
6秒前
Orange应助ekko采纳,获得10
6秒前
李健的小迷弟应助mk91采纳,获得10
7秒前
7秒前
浮游应助东哥采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
大白应助科研通管家采纳,获得10
8秒前
spc68应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
8秒前
spc68应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
hugdoggy发布了新的文献求助20
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
liao应助科研通管家采纳,获得10
8秒前
sandy完成签到,获得积分10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得30
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得30
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684108
求助须知:如何正确求助?哪些是违规求助? 5035205
关于积分的说明 15183583
捐赠科研通 4843435
什么是DOI,文献DOI怎么找? 2596688
邀请新用户注册赠送积分活动 1549396
关于科研通互助平台的介绍 1507893