Standing on the Shoulders of Giants: Hardware and Neural Architecture Co-Search with Hot Start

计算机科学 建筑 钥匙(锁) 现场可编程门阵列 延迟(音频) 人工神经网络 搜索算法 搜索引擎 计算机工程 人工智能 计算机体系结构 计算机硬件 操作系统 情报检索 算法 艺术 电信 视觉艺术
作者
Weiwen Jiang,Lei Yang,Sakyasingha Dasgupta,Jingtong Hu,Yiyu Shi
出处
期刊:Cornell University - arXiv 被引量:7
标识
DOI:10.48550/arxiv.2007.09087
摘要

Hardware and neural architecture co-search that automatically generates Artificial Intelligence (AI) solutions from a given dataset is promising to promote AI democratization; however, the amount of time that is required by current co-search frameworks is in the order of hundreds of GPU hours for one target hardware. This inhibits the use of such frameworks on commodity hardware. The root cause of the low efficiency in existing co-search frameworks is the fact that they start from a "cold" state (i.e., search from scratch). In this paper, we propose a novel framework, namely HotNAS, that starts from a "hot" state based on a set of existing pre-trained models (a.k.a. model zoo) to avoid lengthy training time. As such, the search time can be reduced from 200 GPU hours to less than 3 GPU hours. In HotNAS, in addition to hardware design space and neural architecture search space, we further integrate a compression space to conduct model compressing during the co-search, which creates new opportunities to reduce latency but also brings challenges. One of the key challenges is that all of the above search spaces are coupled with each other, e.g., compression may not work without hardware design support. To tackle this issue, HotNAS builds a chain of tools to design hardware to support compression, based on which a global optimizer is developed to automatically co-search all the involved search spaces. Experiments on ImageNet dataset and Xilinx FPGA show that, within the timing constraint of 5ms, neural architectures generated by HotNAS can achieve up to 5.79% Top-1 and 3.97% Top-5 accuracy gain, compared with the existing ones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lsj发布了新的文献求助10
刚刚
刚刚
刚刚
Akim应助糟糕的铁锤采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
wure10发布了新的文献求助10
4秒前
4秒前
ZG完成签到,获得积分10
4秒前
DHMO完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
大胆听莲发布了新的文献求助10
5秒前
6秒前
7秒前
笨笨醉薇发布了新的文献求助10
8秒前
柔弱绝施发布了新的文献求助10
8秒前
8秒前
英姑应助顺利的曼寒采纳,获得10
8秒前
山梦完成签到 ,获得积分10
8秒前
糟糕的铁锤应助文件撤销了驳回
8秒前
深情安青应助学术laji采纳,获得10
9秒前
juphen2发布了新的文献求助10
9秒前
无花果应助勤奋的千山采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
HEROER完成签到,获得积分20
10秒前
10秒前
我是老大应助biggun采纳,获得10
10秒前
huangyulin2003完成签到,获得积分10
10秒前
10秒前
11发布了新的文献求助30
10秒前
plant完成签到,获得积分0
10秒前
啊发完成签到,获得积分20
10秒前
典雅君浩发布了新的文献求助10
11秒前
斯文败类应助Nova采纳,获得10
11秒前
Rec发布了新的文献求助10
11秒前
机智冬瓜发布了新的文献求助10
11秒前
llllllll发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776956
求助须知:如何正确求助?哪些是违规求助? 5631393
关于积分的说明 15444543
捐赠科研通 4908967
什么是DOI,文献DOI怎么找? 2641505
邀请新用户注册赠送积分活动 1589491
关于科研通互助平台的介绍 1543995