Standing on the Shoulders of Giants: Hardware and Neural Architecture Co-Search with Hot Start

计算机科学 建筑 钥匙(锁) 现场可编程门阵列 延迟(音频) 人工神经网络 搜索算法 搜索引擎 计算机工程 人工智能 计算机体系结构 计算机硬件 操作系统 情报检索 算法 电信 艺术 视觉艺术
作者
Weiwen Jiang,Lei Yang,Sakyasingha Dasgupta,Jingtong Hu,Yiyu Shi
出处
期刊:Cornell University - arXiv 被引量:7
标识
DOI:10.48550/arxiv.2007.09087
摘要

Hardware and neural architecture co-search that automatically generates Artificial Intelligence (AI) solutions from a given dataset is promising to promote AI democratization; however, the amount of time that is required by current co-search frameworks is in the order of hundreds of GPU hours for one target hardware. This inhibits the use of such frameworks on commodity hardware. The root cause of the low efficiency in existing co-search frameworks is the fact that they start from a "cold" state (i.e., search from scratch). In this paper, we propose a novel framework, namely HotNAS, that starts from a "hot" state based on a set of existing pre-trained models (a.k.a. model zoo) to avoid lengthy training time. As such, the search time can be reduced from 200 GPU hours to less than 3 GPU hours. In HotNAS, in addition to hardware design space and neural architecture search space, we further integrate a compression space to conduct model compressing during the co-search, which creates new opportunities to reduce latency but also brings challenges. One of the key challenges is that all of the above search spaces are coupled with each other, e.g., compression may not work without hardware design support. To tackle this issue, HotNAS builds a chain of tools to design hardware to support compression, based on which a global optimizer is developed to automatically co-search all the involved search spaces. Experiments on ImageNet dataset and Xilinx FPGA show that, within the timing constraint of 5ms, neural architectures generated by HotNAS can achieve up to 5.79% Top-1 and 3.97% Top-5 accuracy gain, compared with the existing ones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琪琪完成签到 ,获得积分10
1秒前
仁爱的伯云完成签到,获得积分10
1秒前
myl完成签到,获得积分10
2秒前
坚强的缘分完成签到,获得积分10
2秒前
思源应助切奇莉亚采纳,获得10
2秒前
feijelly完成签到,获得积分10
3秒前
难过的钥匙完成签到 ,获得积分10
3秒前
花花完成签到 ,获得积分10
3秒前
李子维完成签到 ,获得积分10
4秒前
snowball完成签到,获得积分10
4秒前
5秒前
刘一完成签到 ,获得积分10
6秒前
飘逸天亦完成签到,获得积分10
8秒前
Luna完成签到 ,获得积分10
8秒前
陈补天完成签到,获得积分10
8秒前
8秒前
spss2005完成签到,获得积分10
10秒前
Ray发布了新的文献求助10
12秒前
喝口鲫鱼汤应助莫泽珣采纳,获得10
12秒前
yz完成签到,获得积分10
12秒前
zzuzll完成签到,获得积分10
13秒前
Owen应助sweater采纳,获得10
13秒前
玉桂兔完成签到,获得积分10
13秒前
眼睛大的尔竹完成签到 ,获得积分10
14秒前
15秒前
我是老大应助樱_花qxy采纳,获得10
15秒前
支雨泽发布了新的文献求助10
16秒前
lion_wei完成签到,获得积分10
17秒前
17秒前
17秒前
萌神完成签到 ,获得积分20
18秒前
酷波er应助皮皮采纳,获得10
19秒前
Ray完成签到,获得积分10
19秒前
unowhoiam完成签到 ,获得积分10
22秒前
会飞的猪发布了新的文献求助30
24秒前
Lyrics完成签到,获得积分20
25秒前
深情安青应助DMA50采纳,获得10
28秒前
白晶晶完成签到,获得积分20
29秒前
30秒前
周周完成签到,获得积分10
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139874
求助须知:如何正确求助?哪些是违规求助? 2790776
关于积分的说明 7796637
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301692
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194