Federated Learning With Differential Privacy: Algorithms and Performance Analysis

差别隐私 计算机科学 算法 理论计算机科学
作者
Kang Wei,Jun Li,Ming Ding,Chuan Ma,Howard H. Yang,Farhad Farokhi,Shi Jin,Tony Q. S. Quek,H. Vincent Poor
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:15: 3454-3469 被引量:1161
标识
DOI:10.1109/tifs.2020.2988575
摘要

Federated learning (FL), as a type of distributed machine learning, is capable of significantly preserving clients' private data from being exposed to adversaries. Nevertheless, private information can still be divulged by analyzing uploaded parameters from clients, e.g., weights trained in deep neural networks. In this paper, to effectively prevent information leakage, we propose a novel framework based on the concept of differential privacy (DP), in which artificial noise is added to parameters at the clients' side before aggregating, namely, noising before model aggregation FL (NbAFL). First, we prove that the NbAFL can satisfy DP under distinct protection levels by properly adapting different variances of artificial noise. Then we develop a theoretical convergence bound on the loss function of the trained FL model in the NbAFL. Specifically, the theoretical bound reveals the following three key properties: 1) there is a tradeoff between convergence performance and privacy protection levels, i.e., better convergence performance leads to a lower protection level; 2) given a fixed privacy protection level, increasing the number $N$ of overall clients participating in FL can improve the convergence performance; and 3) there is an optimal number aggregation times (communication rounds) in terms of convergence performance for a given protection level. Furthermore, we propose a $K$ -client random scheduling strategy, where $K$ ( $1\leq K< N$ ) clients are randomly selected from the $N$ overall clients to participate in each aggregation. We also develop a corresponding convergence bound for the loss function in this case and the $K$ -client random scheduling strategy also retains the above three properties. Moreover, we find that there is an optimal $K$ that achieves the best convergence performance at a fixed privacy level. Evaluations demonstrate that our theoretical results are consistent with simulations, thereby facilitating the design of various privacy-preserving FL algorithms with different tradeoff requirements on convergence performance and privacy levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
沈海完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
西西完成签到,获得积分20
3秒前
Nitr0ce1L发布了新的文献求助10
3秒前
可靠的青槐完成签到,获得积分10
4秒前
浮生发布了新的文献求助10
5秒前
7秒前
包子发布了新的文献求助10
7秒前
7秒前
9秒前
Jackie完成签到,获得积分10
11秒前
cc小木屋完成签到,获得积分10
12秒前
12秒前
mhm发布了新的文献求助10
13秒前
隐形曼青应助包子采纳,获得10
15秒前
17秒前
龍越发布了新的文献求助10
21秒前
wangheng发布了新的文献求助30
21秒前
23秒前
旁边有堵墙完成签到 ,获得积分10
24秒前
黄辉冯完成签到,获得积分10
26秒前
霜二完成签到 ,获得积分10
28秒前
贷款做科研完成签到,获得积分10
28秒前
万能图书馆应助liuxingcen采纳,获得10
28秒前
Owen应助秋以南采纳,获得10
29秒前
30秒前
阉太狼完成签到,获得积分10
30秒前
30秒前
龍越完成签到,获得积分10
31秒前
自然的茉莉完成签到,获得积分10
32秒前
111发布了新的文献求助10
34秒前
充电宝应助贷款做科研采纳,获得10
35秒前
zxy完成签到 ,获得积分10
36秒前
37秒前
干净思远发布了新的文献求助20
37秒前
39秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143739
求助须知:如何正确求助?哪些是违规求助? 2795236
关于积分的说明 7813804
捐赠科研通 2451222
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601400