Federated Learning With Differential Privacy: Algorithms and Performance Analysis

差别隐私 计算机科学 算法 理论计算机科学
作者
Kang Wei,Jun Li,Ming Ding,Chuan Ma,Howard H. Yang,Farhad Farokhi,Shi Jin,Tony Q. S. Quek,H. Vincent Poor
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:15: 3454-3469 被引量:1324
标识
DOI:10.1109/tifs.2020.2988575
摘要

Federated learning (FL), as a type of distributed machine learning, is capable of significantly preserving clients' private data from being exposed to adversaries. Nevertheless, private information can still be divulged by analyzing uploaded parameters from clients, e.g., weights trained in deep neural networks. In this paper, to effectively prevent information leakage, we propose a novel framework based on the concept of differential privacy (DP), in which artificial noise is added to parameters at the clients' side before aggregating, namely, noising before model aggregation FL (NbAFL). First, we prove that the NbAFL can satisfy DP under distinct protection levels by properly adapting different variances of artificial noise. Then we develop a theoretical convergence bound on the loss function of the trained FL model in the NbAFL. Specifically, the theoretical bound reveals the following three key properties: 1) there is a tradeoff between convergence performance and privacy protection levels, i.e., better convergence performance leads to a lower protection level; 2) given a fixed privacy protection level, increasing the number $N$ of overall clients participating in FL can improve the convergence performance; and 3) there is an optimal number aggregation times (communication rounds) in terms of convergence performance for a given protection level. Furthermore, we propose a $K$ -client random scheduling strategy, where $K$ ( $1\leq K< N$ ) clients are randomly selected from the $N$ overall clients to participate in each aggregation. We also develop a corresponding convergence bound for the loss function in this case and the $K$ -client random scheduling strategy also retains the above three properties. Moreover, we find that there is an optimal $K$ that achieves the best convergence performance at a fixed privacy level. Evaluations demonstrate that our theoretical results are consistent with simulations, thereby facilitating the design of various privacy-preserving FL algorithms with different tradeoff requirements on convergence performance and privacy levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
camera发布了新的文献求助10
刚刚
1秒前
1秒前
Hu发布了新的文献求助10
1秒前
iu发布了新的文献求助10
1秒前
好了完成签到,获得积分10
2秒前
2秒前
怡然雨雪完成签到,获得积分10
2秒前
2秒前
科研通AI5应助李唯佳采纳,获得10
2秒前
万能图书馆应助祝雲采纳,获得10
2秒前
我爱学习完成签到 ,获得积分10
3秒前
111完成签到,获得积分10
3秒前
可乐要加冰完成签到,获得积分10
3秒前
深情安青应助郑开司09采纳,获得10
4秒前
娜行发布了新的文献求助10
4秒前
Auoroa完成签到,获得积分10
4秒前
明智之举完成签到,获得积分10
5秒前
赵赵完成签到,获得积分10
5秒前
共享精神应助lalala采纳,获得10
5秒前
Hello应助hf采纳,获得10
5秒前
5秒前
豆丁完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
鹿友菌完成签到,获得积分10
8秒前
皮克斯完成签到 ,获得积分10
8秒前
黑米粥发布了新的文献求助10
8秒前
iu完成签到,获得积分10
8秒前
脑洞疼应助KX采纳,获得10
8秒前
大模型应助艺玲采纳,获得10
9秒前
ZXD完成签到,获得积分10
9秒前
9秒前
丞诺完成签到,获得积分10
9秒前
Ricardo完成签到,获得积分10
10秒前
深情安青应助孔雀翎采纳,获得10
10秒前
11秒前
11秒前
端庄的萝完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672