Federated Learning With Differential Privacy: Algorithms and Performance Analysis

差别隐私 计算机科学 算法 理论计算机科学
作者
Kang Wei,Jun Li,Ming Ding,Chuan Ma,Howard H. Yang,Farhad Farokhi,Shi Jin,Tony Q. S. Quek,H. Vincent Poor
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:15: 3454-3469 被引量:1443
标识
DOI:10.1109/tifs.2020.2988575
摘要

Federated learning (FL), as a type of distributed machine learning, is capable of significantly preserving clients' private data from being exposed to adversaries. Nevertheless, private information can still be divulged by analyzing uploaded parameters from clients, e.g., weights trained in deep neural networks. In this paper, to effectively prevent information leakage, we propose a novel framework based on the concept of differential privacy (DP), in which artificial noise is added to parameters at the clients' side before aggregating, namely, noising before model aggregation FL (NbAFL). First, we prove that the NbAFL can satisfy DP under distinct protection levels by properly adapting different variances of artificial noise. Then we develop a theoretical convergence bound on the loss function of the trained FL model in the NbAFL. Specifically, the theoretical bound reveals the following three key properties: 1) there is a tradeoff between convergence performance and privacy protection levels, i.e., better convergence performance leads to a lower protection level; 2) given a fixed privacy protection level, increasing the number $N$ of overall clients participating in FL can improve the convergence performance; and 3) there is an optimal number aggregation times (communication rounds) in terms of convergence performance for a given protection level. Furthermore, we propose a $K$ -client random scheduling strategy, where $K$ ( $1\leq K< N$ ) clients are randomly selected from the $N$ overall clients to participate in each aggregation. We also develop a corresponding convergence bound for the loss function in this case and the $K$ -client random scheduling strategy also retains the above three properties. Moreover, we find that there is an optimal $K$ that achieves the best convergence performance at a fixed privacy level. Evaluations demonstrate that our theoretical results are consistent with simulations, thereby facilitating the design of various privacy-preserving FL algorithms with different tradeoff requirements on convergence performance and privacy levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小郭应助qi采纳,获得10
刚刚
端庄的白开水完成签到,获得积分10
1秒前
搜集达人应助Eureka采纳,获得10
1秒前
drdrde4u完成签到,获得积分10
1秒前
欧拉完成签到,获得积分10
1秒前
PLUTO_K22发布了新的文献求助10
1秒前
李健应助彪壮的亦瑶采纳,获得10
2秒前
2秒前
追寻澜发布了新的文献求助10
3秒前
3秒前
FANTA发布了新的文献求助50
4秒前
小蘑菇应助星辰采纳,获得10
4秒前
gentleman完成签到,获得积分10
5秒前
PJ发布了新的文献求助10
5秒前
朴素的念波完成签到,获得积分10
5秒前
5秒前
英姑应助chengwenyu采纳,获得10
5秒前
6秒前
keyanzhang发布了新的文献求助10
6秒前
世界随心走完成签到,获得积分20
6秒前
wu完成签到,获得积分10
8秒前
8秒前
Lucas应助beyondjun采纳,获得10
9秒前
胡志飞发布了新的文献求助10
9秒前
张爱学发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
大猫完成签到,获得积分10
11秒前
眼睛大雨筠完成签到,获得积分0
11秒前
天天快乐应助zhangkx23采纳,获得10
11秒前
yun发布了新的文献求助10
12秒前
白榆完成签到,获得积分20
12秒前
PLUTO_K22完成签到,获得积分10
12秒前
12秒前
张振宇发布了新的文献求助20
12秒前
13秒前
13秒前
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962022
求助须知:如何正确求助?哪些是违规求助? 3508316
关于积分的说明 11140304
捐赠科研通 3240919
什么是DOI,文献DOI怎么找? 1791125
邀请新用户注册赠送积分活动 872741
科研通“疑难数据库(出版商)”最低求助积分说明 803352