Intelligent diagnosis of natural gas pipeline defects using improved flower pollination algorithm and artificial neural network

人工神经网络 管道(软件) 天然气 授粉管理 授粉 工程类 计算机科学 人工智能 算法 废物管理 生物 机械工程 植物 花粉 传粉者
作者
Xiaobin Liang,Wei Liang,Jingyi Xiong
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:264: 121655-121655 被引量:8
标识
DOI:10.1016/j.jclepro.2020.121655
摘要

Abstract With the increasing service life of pipelines, natural gas pipelines can gradually age and produce various corrosion defects. Hence, in order to ensure the efficiency and safety of pipeline transportation in the peak period of natural gas consumption, the intelligent diagnosis technology of the pipelines is of vital importance. In this paper, iterative chaotic map with infinite collapses (ICMIC) and comprehensive opposition (CO) learning strategy are used to optimize flower pollination algorithm (FPA) to enhance search abilities of original FPA algorithm. Among them, the ICMIC enhances the diversity of population, and the local CO learning strategy enhances its exploitation ability. Fifteen classical benchmark functions are used to test the optimization performance of the improved flower pollination algorithm (IFPA). Considering the category, complexity and application of test functions, a more reasonable evaluation formula is proposed. The test shows that the performance of IFPA algorithm is obviously better than other classical intelligent algorithms. Based on the excellent performance of IFPA, the IFPA algorithm is used to optimize the initial weights and thresholds of back propagation (BP) neural network. Therefore, a comprehensive IFPA-BP network model is constructed for the intelligent diagnosis of natural gas pipeline defects. The results show that the proposed model can effectively overcome the problem that BP neural network is prone to fall into local optimal value, and it can accurately identify the pipelines defects. This will facilitate intelligent diagnosis of natural gas pipelines defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
馆长应助liu采纳,获得30
刚刚
科研通AI5应助飞飞采纳,获得10
刚刚
1秒前
1秒前
1秒前
无花果应助负责石头采纳,获得10
1秒前
刘厚麟发布了新的文献求助10
1秒前
Achen发布了新的文献求助10
2秒前
MM发布了新的文献求助10
3秒前
3秒前
李爱国应助风趣的觅山采纳,获得10
3秒前
硕小牛完成签到,获得积分10
3秒前
guangshuang发布了新的文献求助10
3秒前
LL完成签到,获得积分10
4秒前
QQ发布了新的文献求助10
4秒前
4秒前
hongdongxiang发布了新的文献求助30
5秒前
友好慕卉发布了新的文献求助10
5秒前
CipherSage应助乐观的小土豆采纳,获得10
6秒前
justin完成签到,获得积分10
6秒前
充电宝应助拼搏的梦槐采纳,获得10
6秒前
YY发布了新的文献求助10
7秒前
yiqiu完成签到,获得积分10
7秒前
独孤幻月96应助Master_Ye采纳,获得10
7秒前
7秒前
pluto应助紫罗兰花海采纳,获得10
8秒前
8秒前
justin发布了新的文献求助10
8秒前
MH完成签到,获得积分10
8秒前
9秒前
无言已对完成签到,获得积分10
9秒前
CipherSage应助徐昊雯采纳,获得10
10秒前
西瓜发布了新的文献求助10
10秒前
Owen应助舒心的凝莲采纳,获得10
11秒前
mhq发布了新的文献求助50
11秒前
11秒前
YZZ完成签到,获得积分10
12秒前
12秒前
水木完成签到,获得积分10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646