Intelligent diagnosis of natural gas pipeline defects using improved flower pollination algorithm and artificial neural network

人工神经网络 管道(软件) 天然气 授粉管理 授粉 工程类 计算机科学 人工智能 算法 废物管理 生物 机械工程 植物 传粉者 花粉
作者
Xiaobin Liang,Wei Liang,Jingyi Xiong
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:264: 121655-121655 被引量:8
标识
DOI:10.1016/j.jclepro.2020.121655
摘要

Abstract With the increasing service life of pipelines, natural gas pipelines can gradually age and produce various corrosion defects. Hence, in order to ensure the efficiency and safety of pipeline transportation in the peak period of natural gas consumption, the intelligent diagnosis technology of the pipelines is of vital importance. In this paper, iterative chaotic map with infinite collapses (ICMIC) and comprehensive opposition (CO) learning strategy are used to optimize flower pollination algorithm (FPA) to enhance search abilities of original FPA algorithm. Among them, the ICMIC enhances the diversity of population, and the local CO learning strategy enhances its exploitation ability. Fifteen classical benchmark functions are used to test the optimization performance of the improved flower pollination algorithm (IFPA). Considering the category, complexity and application of test functions, a more reasonable evaluation formula is proposed. The test shows that the performance of IFPA algorithm is obviously better than other classical intelligent algorithms. Based on the excellent performance of IFPA, the IFPA algorithm is used to optimize the initial weights and thresholds of back propagation (BP) neural network. Therefore, a comprehensive IFPA-BP network model is constructed for the intelligent diagnosis of natural gas pipeline defects. The results show that the proposed model can effectively overcome the problem that BP neural network is prone to fall into local optimal value, and it can accurately identify the pipelines defects. This will facilitate intelligent diagnosis of natural gas pipelines defects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张发布了新的文献求助10
1秒前
张贵虎完成签到 ,获得积分10
2秒前
JamesPei应助科研百晓生采纳,获得10
3秒前
自觉葶发布了新的文献求助10
4秒前
4秒前
5秒前
RaynorHank发布了新的文献求助10
5秒前
小二郎应助小张采纳,获得10
6秒前
7秒前
sssjjjxx完成签到,获得积分20
9秒前
Chen完成签到,获得积分10
10秒前
半_发布了新的文献求助10
10秒前
Lyra完成签到,获得积分10
10秒前
难搞了完成签到,获得积分10
11秒前
12秒前
欣喜的硬币完成签到 ,获得积分10
12秒前
12秒前
打打应助yjh采纳,获得10
12秒前
万能图书馆应助luke采纳,获得10
13秒前
13秒前
13秒前
15秒前
大模型应助半_采纳,获得10
16秒前
17秒前
17秒前
向阳发布了新的文献求助10
17秒前
17秒前
nanshou发布了新的文献求助10
18秒前
小龚小龚发布了新的文献求助10
18秒前
18秒前
简单的藏红花完成签到,获得积分10
18秒前
panyubo完成签到,获得积分20
19秒前
TANG发布了新的文献求助10
20秒前
可靠F发布了新的文献求助10
21秒前
小鱼完成签到,获得积分10
22秒前
天真依玉完成签到,获得积分10
22秒前
yjh发布了新的文献求助10
22秒前
23秒前
熊猫之歌完成签到,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646