Intelligent diagnosis of natural gas pipeline defects using improved flower pollination algorithm and artificial neural network

人工神经网络 管道(软件) 天然气 授粉管理 授粉 工程类 计算机科学 人工智能 算法 废物管理 生物 机械工程 植物 花粉 传粉者
作者
Xiaobin Liang,Wei Liang,Jingyi Xiong
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:264: 121655-121655 被引量:8
标识
DOI:10.1016/j.jclepro.2020.121655
摘要

Abstract With the increasing service life of pipelines, natural gas pipelines can gradually age and produce various corrosion defects. Hence, in order to ensure the efficiency and safety of pipeline transportation in the peak period of natural gas consumption, the intelligent diagnosis technology of the pipelines is of vital importance. In this paper, iterative chaotic map with infinite collapses (ICMIC) and comprehensive opposition (CO) learning strategy are used to optimize flower pollination algorithm (FPA) to enhance search abilities of original FPA algorithm. Among them, the ICMIC enhances the diversity of population, and the local CO learning strategy enhances its exploitation ability. Fifteen classical benchmark functions are used to test the optimization performance of the improved flower pollination algorithm (IFPA). Considering the category, complexity and application of test functions, a more reasonable evaluation formula is proposed. The test shows that the performance of IFPA algorithm is obviously better than other classical intelligent algorithms. Based on the excellent performance of IFPA, the IFPA algorithm is used to optimize the initial weights and thresholds of back propagation (BP) neural network. Therefore, a comprehensive IFPA-BP network model is constructed for the intelligent diagnosis of natural gas pipeline defects. The results show that the proposed model can effectively overcome the problem that BP neural network is prone to fall into local optimal value, and it can accurately identify the pipelines defects. This will facilitate intelligent diagnosis of natural gas pipelines defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
传奇3应助lishihao采纳,获得10
1秒前
2秒前
楠楠完成签到 ,获得积分20
2秒前
XinX完成签到,获得积分10
2秒前
huapeng发布了新的文献求助10
2秒前
3秒前
5秒前
6秒前
科研小白发布了新的文献求助10
6秒前
wonder123发布了新的文献求助10
6秒前
米米兔完成签到,获得积分10
7秒前
小冯发布了新的文献求助10
8秒前
8秒前
姜露萍发布了新的文献求助10
8秒前
9秒前
9秒前
旺旺小小酥完成签到,获得积分10
9秒前
10秒前
wonder123发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
研友_VZG7GZ应助huapeng采纳,获得10
12秒前
学术混子发布了新的文献求助10
12秒前
xmy发布了新的文献求助10
13秒前
汉堡包应助lm采纳,获得10
13秒前
13秒前
lishihao发布了新的文献求助10
14秒前
我是老大应助yxr0315采纳,获得10
14秒前
Donk完成签到 ,获得积分10
14秒前
来来发布了新的文献求助10
14秒前
陈老太发布了新的文献求助10
14秒前
CipherSage应助bbh采纳,获得10
15秒前
恋雅颖月应助姜露萍采纳,获得10
17秒前
十七发布了新的文献求助10
17秒前
17秒前
17秒前
小小阿杰发布了新的文献求助10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176