Intelligent diagnosis of natural gas pipeline defects using improved flower pollination algorithm and artificial neural network

人工神经网络 管道(软件) 天然气 授粉管理 授粉 工程类 计算机科学 人工智能 算法 废物管理 生物 机械工程 植物 传粉者 花粉
作者
Xiaobin Liang,Wei Liang,Jingyi Xiong
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:264: 121655-121655 被引量:8
标识
DOI:10.1016/j.jclepro.2020.121655
摘要

Abstract With the increasing service life of pipelines, natural gas pipelines can gradually age and produce various corrosion defects. Hence, in order to ensure the efficiency and safety of pipeline transportation in the peak period of natural gas consumption, the intelligent diagnosis technology of the pipelines is of vital importance. In this paper, iterative chaotic map with infinite collapses (ICMIC) and comprehensive opposition (CO) learning strategy are used to optimize flower pollination algorithm (FPA) to enhance search abilities of original FPA algorithm. Among them, the ICMIC enhances the diversity of population, and the local CO learning strategy enhances its exploitation ability. Fifteen classical benchmark functions are used to test the optimization performance of the improved flower pollination algorithm (IFPA). Considering the category, complexity and application of test functions, a more reasonable evaluation formula is proposed. The test shows that the performance of IFPA algorithm is obviously better than other classical intelligent algorithms. Based on the excellent performance of IFPA, the IFPA algorithm is used to optimize the initial weights and thresholds of back propagation (BP) neural network. Therefore, a comprehensive IFPA-BP network model is constructed for the intelligent diagnosis of natural gas pipeline defects. The results show that the proposed model can effectively overcome the problem that BP neural network is prone to fall into local optimal value, and it can accurately identify the pipelines defects. This will facilitate intelligent diagnosis of natural gas pipelines defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yidashi完成签到,获得积分10
刚刚
Kelvin.Tsi完成签到 ,获得积分10
刚刚
Island发布了新的文献求助10
1秒前
hu970发布了新的文献求助10
1秒前
九九发布了新的文献求助10
1秒前
123456完成签到,获得积分10
1秒前
BareBear应助龙妍琳采纳,获得10
1秒前
赘婿应助wary采纳,获得10
2秒前
小蘑菇应助wary采纳,获得10
2秒前
上官若男应助wary采纳,获得10
2秒前
李爱国应助木子采纳,获得10
2秒前
烟花应助马佳凯采纳,获得10
2秒前
2秒前
LYL完成签到,获得积分10
3秒前
3秒前
得意凡人完成签到,获得积分10
3秒前
3秒前
害怕的擎宇完成签到,获得积分10
4秒前
柳絮完成签到,获得积分20
4秒前
5秒前
赫连烙发布了新的文献求助10
5秒前
目遇给目遇的求助进行了留言
6秒前
Arnold发布了新的文献求助10
7秒前
在九月完成签到 ,获得积分10
7秒前
selfevidbet发布了新的文献求助30
7秒前
通~发布了新的文献求助10
7秒前
靓仔完成签到,获得积分10
7秒前
妙手回春板蓝根完成签到,获得积分10
7秒前
8秒前
11完成签到,获得积分10
9秒前
1111完成签到,获得积分10
9秒前
777完成签到,获得积分10
10秒前
junzilan发布了新的文献求助10
10秒前
10秒前
sun应助leave采纳,获得20
10秒前
10秒前
11秒前
11秒前
Loooong应助小房子采纳,获得10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762