A Minimal State Augmentation Algorithm for Vision-Based Navigation without Using Mapped Landmarks

计算机视觉 职位(财务) 人工智能 计算机科学 航天器 滤波器(信号处理) 地形 维数(图论) 磁道(磁盘驱动器) 航程(航空) 算法 工程类 地理 数学 航空航天工程 操作系统 经济 地图学 纯数学 财务
作者
A. Miguel San Martin,David S. Bayard,Dylan Conway,Milan Mandić,Erik S. Bailey
链接
摘要

This paper describes MAVeN (Minimal State Augmentation Algorithm for Vision-Based Navigation), which is a new algorithm for vision-based navigation that has only 21 states, yet is able to track features in successive camera images and use them to propagate estimates of the spacecraft position and velocity. The filter dimension drops to 12 if attitude information is already available. The low filter dimension makes MAVeN a very reliable and practical algorithm for real-time flight implementation. The main idea is to project observed features onto a rough shape model of the ground surface, which are then used by the filter as pseudo-landmarks. The shape model is assumed to be known beforehand, as would be obtained from prior surveillance of the landing site from orbit. MAVeN does not require pre-mapped landmarks, so it is able to navigate terrain that has not been previously observed up close. This property is especially important for close proximity operations in small body missions where ground surface features are being seen for the first time at close range. MAVeN is also able to hover motionless above the ground without position error growth, which is unusual for this class of vision-based navigation algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
fool发布了新的文献求助10
1秒前
maple完成签到,获得积分10
1秒前
1秒前
xuxu96发布了新的文献求助30
1秒前
爆米花应助Liao采纳,获得10
1秒前
1秒前
深情安青应助只是个赠品采纳,获得10
2秒前
翼静应助粗心的邴采纳,获得10
2秒前
顺利的鱼完成签到,获得积分10
3秒前
王珺完成签到,获得积分10
4秒前
4秒前
哲999发布了新的文献求助10
4秒前
5秒前
YY7发布了新的文献求助10
6秒前
zhangyuan发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
T Tom发布了新的文献求助10
7秒前
加力完成签到,获得积分10
8秒前
9秒前
楠小秾完成签到,获得积分10
9秒前
香蕉觅云应助fool采纳,获得10
10秒前
10秒前
11秒前
Lucas应助发嗲的哑铃采纳,获得10
11秒前
今后应助称心寒松采纳,获得10
11秒前
科研通AI2S应助清秀小白菜采纳,获得10
12秒前
朱梅琳完成签到,获得积分20
12秒前
13秒前
14秒前
楠小秾发布了新的文献求助10
14秒前
14秒前
15秒前
勿忘9451发布了新的文献求助10
15秒前
小二郎应助DDdaisiki采纳,获得10
15秒前
在水一方应助我知道采纳,获得10
16秒前
16秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Semiconductor Process Reliability in Practice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206140
求助须知:如何正确求助?哪些是违规求助? 2855558
关于积分的说明 8100014
捐赠科研通 2520572
什么是DOI,文献DOI怎么找? 1353532
科研通“疑难数据库(出版商)”最低求助积分说明 641780
邀请新用户注册赠送积分活动 612869