Exploring the classification of cancer cell lines from multiple omic views

组学 聚类分析 蛋白质组学 癌症 计算生物学 癌细胞系 生物信息学 生物 计算机科学 癌细胞 遗传学 人工智能 基因
作者
Xisheng Yang,Yao Wen,Xinyu Song,Song He,Xiaochen Bo
出处
期刊:PeerJ [PeerJ]
卷期号:8: e9440-e9440 被引量:6
标识
DOI:10.7717/peerj.9440
摘要

Cancer classification is of great importance to understanding its pathogenesis, making diagnosis and developing treatment. The accumulation of extensive omics data of abundant cancer cell line provide basis for large scale classification of cancer with low cost. However, the reliability of cell lines as in vitro models of cancer has been controversial.In this study, we explore the classification on pan-cancer cell line with single and integrated multiple omics data from the Cancer Cell Line Encyclopedia (CCLE) database. The representative omics data of cancer, mRNA data, miRNA data, copy number variation data, DNA methylation data and reverse-phase protein array data were taken into the analysis. TumorMap web tool was used to illustrate the landscape of molecular classification.The molecular classification of patient samples was compared with cancer cell lines.Eighteen molecular clusters were identified using integrated multiple omics clustering. Three pan-cancer clusters were found in integrated multiple omics clustering. By comparing with single omics clustering, we found that integrated clustering could capture both shared and complementary information from each omics data. Omics contribution analysis for clustering indicated that, although all the five omics data were of value, mRNA and proteomics data were particular important. While the classifications were generally consistent, samples from cancer patients were more diverse than cancer cell lines.The clustering analysis based on integrated omics data provides a novel multi-dimensional map of cancer cell lines that can reflect the extent to pan-cancer cell lines represent primary tumors, and an approach to evaluate the importance of omic features in cancer classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上官若男应助甜蜜冰颜采纳,获得10
1秒前
2秒前
hyy关注了科研通微信公众号
2秒前
时倾完成签到,获得积分10
2秒前
369852发布了新的文献求助30
2秒前
医路通行发布了新的文献求助10
4秒前
asd发布了新的文献求助10
4秒前
5秒前
YY完成签到,获得积分10
5秒前
青出于蓝蔡关注了科研通微信公众号
5秒前
善学以致用应助十一采纳,获得10
6秒前
7秒前
7秒前
8秒前
asd关闭了asd文献求助
9秒前
10秒前
轻青完成签到,获得积分10
11秒前
supersky发布了新的文献求助10
11秒前
悦耳的真发布了新的文献求助10
11秒前
12秒前
12秒前
小小酥完成签到 ,获得积分10
12秒前
完美世界应助YY采纳,获得10
13秒前
13秒前
良辰应助嘉悦的小狗博士采纳,获得10
14秒前
14秒前
轻青发布了新的文献求助10
15秒前
薛定谔的猫完成签到,获得积分10
15秒前
万能图书馆应助秋心采纳,获得10
15秒前
不怕困难完成签到,获得积分20
17秒前
everglow完成签到,获得积分10
17秒前
mo发布了新的文献求助10
17秒前
梓泽丘墟发布了新的文献求助100
18秒前
18秒前
18秒前
wwf完成签到,获得积分10
20秒前
20秒前
微笑的思卉完成签到,获得积分10
21秒前
luo发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161774
求助须知:如何正确求助?哪些是违规求助? 2813049
关于积分的说明 7898270
捐赠科研通 2472043
什么是DOI,文献DOI怎么找? 1316316
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129