Chemometrics and Experimental Design for the Quantification of Nitrate Salts in Nitric Acid: Near-Infrared Spectroscopy Absorption Analysis

化学计量学 偏最小二乘回归 校准 集合(抽象数据类型) 数据集 实验设计 计算机科学 主成分分析 多元统计 硝酸 线性回归 生物系统 化学 人工智能 统计 机器学习 数学 生物 无机化学 程序设计语言
作者
Luke R. Sadergaski,Gretchen Toney,Lætitia H. Delmau,Kristian Myhre
出处
期刊:Applied Spectroscopy [SAGE Publishing]
卷期号:75 (9): 1155-1167 被引量:16
标识
DOI:10.1177/0003702820987281
摘要

Implementing remote, real-time spectroscopic monitoring of radiochemical processing streams in hot cell environments requires efficiency and simplicity. The success of optical spectroscopy for the quantification of species in chemical systems highly depends on representative training sets and suitable validation sets. Selecting a training set (i.e., calibration standards) to build multivariate regression models is both time- and resource-consuming using standard one-factor-at-a-time approaches. This study describes the use of experimental design to generate spectral training sets and a validation set for the quantification of sodium nitrate (0–1 M) and nitric acid (0.1–10 M) using the near-infrared water band centered at 1440 nm. Partial least squares regression models were built from training sets generated by both D- and I-optimal experimental designs and a one-factor-at-a-time approach. The prediction performance of each model was evaluated by comparing the bias and standard error of prediction for statistical significance. D- and I-optimal designs reduced the number of samples required to build regression models compared with one-factor-at-a-time while also improving performance. Models must be confirmed against a validation sample set when minimizing the number of samples in the training set. The D-optimal design performed the best when considering both performance and efficiency by improving predictive capability and reducing number of samples in the training set by 64% compared with the one-factor-at-a-time approach. The experimental design approach objectively selects calibration and validation spectral data sets based on statistical criterion to optimize performance and minimize resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_VZG7GZ应助活力的听露采纳,获得10
2秒前
曹中明发布了新的文献求助10
2秒前
2秒前
共享精神应助雪菲菲采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
利酱完成签到,获得积分20
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
拼搏诗翠发布了新的文献求助10
5秒前
白夜完成签到 ,获得积分10
5秒前
薏晓完成签到,获得积分10
6秒前
6秒前
灵巧土豆发布了新的文献求助10
7秒前
欣喜柚子发布了新的文献求助20
7秒前
teamguichu发布了新的文献求助10
7秒前
Fran07发布了新的文献求助30
7秒前
Gauss应助@_@采纳,获得30
7秒前
奋斗的珍发布了新的文献求助10
8秒前
彭于晏发布了新的文献求助10
8秒前
xiaojing发布了新的文献求助10
8秒前
张啦啦发布了新的文献求助10
8秒前
不吃香菜发布了新的文献求助10
9秒前
饕餮发布了新的文献求助10
9秒前
9秒前
9秒前
Gauss应助端庄蜜粉采纳,获得30
10秒前
10秒前
12秒前
12秒前
无花果应助hjs采纳,获得10
12秒前
6ackpack发布了新的文献求助10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748456
求助须知:如何正确求助?哪些是违规求助? 3291468
关于积分的说明 10073184
捐赠科研通 3007264
什么是DOI,文献DOI怎么找? 1651526
邀请新用户注册赠送积分活动 786444
科研通“疑难数据库(出版商)”最低求助积分说明 751742