Chemometrics and Experimental Design for the Quantification of Nitrate Salts in Nitric Acid: Near-Infrared Spectroscopy Absorption Analysis

化学计量学 偏最小二乘回归 校准 集合(抽象数据类型) 数据集 实验设计 计算机科学 主成分分析 多元统计 硝酸 线性回归 生物系统 化学 人工智能 统计 机器学习 数学 生物 无机化学 程序设计语言
作者
Luke R. Sadergaski,Gretchen Toney,Lætitia H. Delmau,Kristian Myhre
出处
期刊:Applied Spectroscopy [SAGE Publishing]
卷期号:75 (9): 1155-1167 被引量:23
标识
DOI:10.1177/0003702820987281
摘要

Implementing remote, real-time spectroscopic monitoring of radiochemical processing streams in hot cell environments requires efficiency and simplicity. The success of optical spectroscopy for the quantification of species in chemical systems highly depends on representative training sets and suitable validation sets. Selecting a training set (i.e., calibration standards) to build multivariate regression models is both time- and resource-consuming using standard one-factor-at-a-time approaches. This study describes the use of experimental design to generate spectral training sets and a validation set for the quantification of sodium nitrate (0–1 M) and nitric acid (0.1–10 M) using the near-infrared water band centered at 1440 nm. Partial least squares regression models were built from training sets generated by both D- and I-optimal experimental designs and a one-factor-at-a-time approach. The prediction performance of each model was evaluated by comparing the bias and standard error of prediction for statistical significance. D- and I-optimal designs reduced the number of samples required to build regression models compared with one-factor-at-a-time while also improving performance. Models must be confirmed against a validation sample set when minimizing the number of samples in the training set. The D-optimal design performed the best when considering both performance and efficiency by improving predictive capability and reducing number of samples in the training set by 64% compared with the one-factor-at-a-time approach. The experimental design approach objectively selects calibration and validation spectral data sets based on statistical criterion to optimize performance and minimize resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孔孔完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
LEO发布了新的文献求助10
2秒前
poting完成签到,获得积分10
3秒前
木木彡发布了新的文献求助10
3秒前
阳光珍完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
无花果应助有人喜欢蓝采纳,获得10
6秒前
kingwill应助冰山泥采纳,获得20
6秒前
6秒前
肖鹏完成签到,获得积分10
7秒前
7秒前
羊羊羊发布了新的文献求助10
7秒前
加德士完成签到,获得积分20
8秒前
Belinda发布了新的文献求助10
8秒前
何香香能吃苦完成签到,获得积分10
8秒前
8秒前
一见喜发布了新的文献求助10
10秒前
科研通AI5应助左悬月采纳,获得30
11秒前
隐形曼青应助爱听歌无极采纳,获得10
11秒前
科目三应助开放夏旋采纳,获得10
11秒前
Leonard发布了新的文献求助10
12秒前
暖雪儿完成签到,获得积分10
12秒前
FashionBoy应助会举重的树采纳,获得10
12秒前
gm完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
科研通AI5应助yb采纳,获得10
14秒前
小孙发布了新的文献求助10
14秒前
2021完成签到 ,获得积分10
14秒前
xixi完成签到,获得积分10
14秒前
华仔应助幸福的鞋垫采纳,获得10
16秒前
完美世界应助剑诗杜康采纳,获得10
17秒前
尘埃发布了新的文献求助10
18秒前
蠢宝贝发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547101
求助须知:如何正确求助?哪些是违规求助? 3978164
关于积分的说明 12318204
捐赠科研通 3646677
什么是DOI,文献DOI怎么找? 2008295
邀请新用户注册赠送积分活动 1043874
科研通“疑难数据库(出版商)”最低求助积分说明 932515