数学
勒让德多项式
Petrov–Galerkin方法
对偶(语法数字)
勒让德小波
数学分析
微分方程
应用数学
基函数
勒让德函数
订单(交换)
伽辽金法
小波
计算机科学
有限元法
物理
离散小波变换
文学类
小波变换
经济
人工智能
艺术
热力学
财务
作者
Shan Li,Shi-Mi Yan,Zhongqing Wang
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2019-11-29
卷期号:25 (4): 1543-1563
被引量:2
标识
DOI:10.3934/dcdsb.2019239
摘要
Efficient Legendre dual-Petrov-Galerkin methods for solving odd-order differential equations are proposed. Some Sobolev bi-orthogonal basis functions are constructed which lead to the diagonalization of discrete systems. Accordingly, both the exact solutions and the approximate solutions can be represented as infinite and truncated Fourier-like series. Numerical results indicate that the suggested methods are extremely accurate and efficient, and suitable for the odd-order equations.
科研通智能强力驱动
Strongly Powered by AbleSci AI