Efficient Legendre dual-Petrov-Galerkin methods for solving odd-order differential equations are proposed. Some Sobolev bi-orthogonal basis functions are constructed which lead to the diagonalization of discrete systems. Accordingly, both the exact solutions and the approximate solutions can be represented as infinite and truncated Fourier-like series. Numerical results indicate that the suggested methods are extremely accurate and efficient, and suitable for the odd-order equations.