Deep and Structure-Preserving Autoencoders for Clustering Data With Missing Information

自编码 聚类分析 缺少数据 计算机科学 人工智能 模式识别(心理学) 数据挖掘 兰德指数 数据集 代表(政治) 模糊聚类 集合(抽象数据类型) 人工神经网络 机器学习 政治 政治学 程序设计语言 法学
作者
Suvra Jyoti Choudhury,Nikhil R. Pal
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (4): 639-650 被引量:7
标识
DOI:10.1109/tetci.2019.2949264
摘要

Most real-life data suffer from missing values. Here we deal with the problem of exploratory analysis, via clustering, of data with missing values. For this we need an effective mechanism to deal with missing features so that all available information can be used for clustering. We propose two autoencoder-based methods for handling of missing data for clustering. The autoencoder is trained in a two-phase scheme using only part of the given data set which does not have any incomplete instances in such a manner that the autoencoder is better equipped to deal with incomplete data. To cluster the entire data set which has instances with missing values, we generate the latent space representation of the all instances, with or without, missing information. Before the incomplete instances are submitted to the autoencoder, the missing inputs are filled in by a k-nearest neighbor-based rule. The clustering is then done in the latent space using the fuzzy-c-means (FCM) algorithm. In the second method, to preserve the “structure” of the input data in the latent space we extend our method by adding Sammon's stress as a regularizer to the objective function of the autoencoder. We test the effectiveness of the proposed algorithms on several data sets and compare the results with five state-of-the-art techniques. For comparison, we use two performance indicators: Normalized Mutual Information (NMI) and Adjusted Rand index (ARI).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
怜然关注了科研通微信公众号
4秒前
情怀应助李杰采纳,获得10
6秒前
所所应助天天开心采纳,获得10
6秒前
初一发布了新的文献求助10
6秒前
赘婿应助万松辉采纳,获得10
6秒前
7秒前
ysws完成签到,获得积分10
8秒前
Orange应助乐观的颦采纳,获得10
8秒前
完美世界应助June采纳,获得10
10秒前
11秒前
11秒前
闪闪完成签到,获得积分10
13秒前
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
13秒前
所所应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得20
14秒前
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
慎默应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
16秒前
冷酷夏真完成签到 ,获得积分10
18秒前
18秒前
悦耳沛槐完成签到,获得积分10
18秒前
万松辉发布了新的文献求助10
21秒前
legend完成签到,获得积分0
22秒前
怜然发布了新的文献求助10
22秒前
luckyhan发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073