A Novel Dissection Gesture Classification to Characterize Robotic Dissection Technique for Renal Hilar Dissection

医学 解剖(医学) 图书馆学 泌尿科 外科 计算机科学
作者
Runzhuo Ma,Erik B. Vanstrum,Jessica H. Nguyen,Andrew Chen,Jian Chen,Andrew J. Hung
出处
期刊:The Journal of Urology [Ovid Technologies (Wolters Kluwer)]
卷期号:205 (1): 271-275 被引量:8
标识
DOI:10.1097/ju.0000000000001328
摘要

No AccessJournal of UrologyNew Technology and Techniques1 Jan 2021A Novel Dissection Gesture Classification to Characterize Robotic Dissection Technique for Renal Hilar Dissection Runzhuo Ma, Erik B. Vanstrum, Jessica H. Nguyen, Andrew Chen, Jian Chen, and Andrew J. Hung Runzhuo MaRunzhuo Ma Center for Robotic Simulation & Education, Catherine & Joseph Aresty Department of Urology, USC Institute of Urology, University of Southern California, Los Angeles, California , Erik B. VanstrumErik B. Vanstrum Center for Robotic Simulation & Education, Catherine & Joseph Aresty Department of Urology, USC Institute of Urology, University of Southern California, Los Angeles, California , Jessica H. NguyenJessica H. Nguyen Center for Robotic Simulation & Education, Catherine & Joseph Aresty Department of Urology, USC Institute of Urology, University of Southern California, Los Angeles, California , Andrew ChenAndrew Chen Center for Robotic Simulation & Education, Catherine & Joseph Aresty Department of Urology, USC Institute of Urology, University of Southern California, Los Angeles, California , Jian ChenJian Chen Center for Robotic Simulation & Education, Catherine & Joseph Aresty Department of Urology, USC Institute of Urology, University of Southern California, Los Angeles, California , and Andrew J. HungAndrew J. Hung *Correspondence: University of Southern California Institute of Urology, 1441 Eastlake Ave., Suite 7416, Los Angeles, California 90089 telephone: 323-865-3700; FAX: 323-865-0120; E-mail Address: [email protected] Center for Robotic Simulation & Education, Catherine & Joseph Aresty Department of Urology, USC Institute of Urology, University of Southern California, Los Angeles, California View All Author Informationhttps://doi.org/10.1097/JU.0000000000001328AboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract Purpose: Deconstruction of robotic surgical gestures into semantic vocabulary yields an effective tool for surgical education. In this study we disassembled tissue dissection into basic gestures, created a classification system, and showed its ability to distinguish between experts and novices. Materials and Methods: Videos of renal hilum preparation during robotic assisted partial nephrectomies were manually reviewed to identify all discrete surgical movements. Identified dissection movements were classified into distinct gestures based on the consensus of 6 expert surgeons. This classification system was then employed to compare expert and novice dissection patterns during the renal hilum preparation. Results: A total of 40 robotic renal hilum preparation videos were reviewed, representing 16 from 6 expert surgeons (100 or more robotic cases) and 24 from 13 novice surgeons (fewer than 100 robotic cases). Overall 9,819 surgical movements were identified, including 5,667 dissection movements and 4,152 supporting movements. Nine distinct dissection gestures were identified and classified into the 3 categories of single blunt dissection (spread, peel/push, hook), single sharp dissection (cold cut, hot cut and burn dissect) and combination gestures (pedicalize, 2-hand spread, and coagulate then cut). Experts completed 5 of 9 dissection gestures more efficiently than novices (p ≤0.033). In consideration of specific anatomical locations, experts used more peel/push and less hot cut while dissecting the renal vein (p <0.001), and used more pedicalize while dissecting the renal artery (p <0.001). Conclusions: Using this novel dissection gesture classification system, key differences in dissection patterns can be found between experts/novices. This comprehensive classification of dissection gestures may be broadly applied to streamline surgical education. References 1. : The effect of technical performance on patient outcomes in surgery: a systematic review. Ann Surg 2017; 265: 492. Google Scholar 2. : Surgical skill and complication rates after bariatric surgery. N Engl J Med 2013; 369: 1434. Google Scholar 3. : Surgical process modelling: a review. Int J Comput Assist Radiol Surg 2014; 9: 495. Google Scholar 4. : Video content analysis of surgical procedures. Surg Endosc 2018; 32: 553. Google Scholar 5. : Structured learning for robotic surgery utilizing a proficiency score: a pilot study. World J Urol 2017; 35: 27. Google Scholar 6. : Use of automated performance metrics to measure surgeon performance during robotic vesicourethral anastomosis and methodical development of a training tutorial. J Urol 2018; 200: 895. Link, Google Scholar 7. : Crowdsourcing assessment of surgeon dissection of renal artery and vein during robotic partial nephrectomy: a novel approach for quantitative assessment of surgical performance. J Endourol 2016; 30: 447. Google Scholar 8. : Learning curves for urological procedures: a systematic review. BJU Int 2014; 114: 617. Google Scholar 9. : Development and validation of objective performance metrics for robot-assisted radical prostatectomy: a pilot study. J Urol 2018; 199: 296. Link, Google Scholar 10. : Experts vs super-experts: differences in automated performance metrics and clinical outcomes for robot-assisted radical prostatectomy. BJU Int 2019; 123: 861. Google Scholar No direct or indirect commercial, personal, academic, political, religious or ethical incentive is associated with publishing this article. © 2020 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetailsCited ByGhodoussipour S, Reddy S, Ma R, Huang D, Nguyen J and Hung A (2021) Reply by AuthorsJournal of Urology, VOL. 205, NO. 5, (1302-1302), Online publication date: 1-May-2021.Vanstrum E, Ma R, Maya-Silva J, Sanford D, Nguyen J, Lei X, Chevinksy M, Ghoreifi A, Han J, Polotti C, Powers R, Yip W, Zhang M, Aron M, Collins J, Daneshmand S, Davis J, Desai M, Gerjy R, Goh A, Hu J, Kimmig R, Lendvay T, Porter J, Sotelo R, Sundaram C, Cen S, Gill I and Hung A (2021) Development and Validation of an Objective Scoring Tool to Evaluate Surgical Dissection: Dissection Assessment for Robotic Technique (DART)Urology Practice, VOL. 8, NO. 5, (596-604), Online publication date: 1-Sep-2021. Volume 205Issue 1January 2021Page: 271-275 Advertisement Copyright & Permissions© 2020 by American Urological Association Education and Research, Inc.KeywordsnephrectomydissectionsurgeonseducationroboticsAcknowledgementsShubham Bhatia assisted with data analysis. Daniel Sanford and Balint Der provided technical support of video editing.MetricsAuthor Information Runzhuo Ma Center for Robotic Simulation & Education, Catherine & Joseph Aresty Department of Urology, USC Institute of Urology, University of Southern California, Los Angeles, California More articles by this author Erik B. Vanstrum Center for Robotic Simulation & Education, Catherine & Joseph Aresty Department of Urology, USC Institute of Urology, University of Southern California, Los Angeles, California More articles by this author Jessica H. Nguyen Center for Robotic Simulation & Education, Catherine & Joseph Aresty Department of Urology, USC Institute of Urology, University of Southern California, Los Angeles, California More articles by this author Andrew Chen Center for Robotic Simulation & Education, Catherine & Joseph Aresty Department of Urology, USC Institute of Urology, University of Southern California, Los Angeles, California More articles by this author Jian Chen Center for Robotic Simulation & Education, Catherine & Joseph Aresty Department of Urology, USC Institute of Urology, University of Southern California, Los Angeles, California More articles by this author Andrew J. Hung Center for Robotic Simulation & Education, Catherine & Joseph Aresty Department of Urology, USC Institute of Urology, University of Southern California, Los Angeles, California *Correspondence: University of Southern California Institute of Urology, 1441 Eastlake Ave., Suite 7416, Los Angeles, California 90089 telephone: 323-865-3700; FAX: 323-865-0120; E-mail Address: [email protected] Financial interest and/or other relationship with Quantgene, Inc. and Mimic Technologies, Inc. More articles by this author Expand All No direct or indirect commercial, personal, academic, political, religious or ethical incentive is associated with publishing this article. Advertisement Loading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lqg完成签到,获得积分20
刚刚
谷雨发布了新的文献求助10
1秒前
单身的钧发布了新的文献求助10
1秒前
玲KYT呢发布了新的文献求助10
2秒前
liulei发布了新的文献求助10
2秒前
2秒前
YUYI完成签到,获得积分10
3秒前
酷炫的紫发布了新的文献求助10
3秒前
4秒前
una关闭了una文献求助
5秒前
nanci应助皮皮朱采纳,获得30
8秒前
鹿依波完成签到,获得积分10
8秒前
次一口8发布了新的文献求助10
8秒前
墨之未发布了新的文献求助10
9秒前
白綀完成签到 ,获得积分10
9秒前
9秒前
10秒前
ZOLEI发布了新的文献求助10
10秒前
不知名的呆毛完成签到 ,获得积分10
10秒前
11秒前
12秒前
12秒前
12秒前
zxl完成签到,获得积分10
13秒前
13秒前
mm完成签到 ,获得积分10
13秒前
14秒前
14秒前
饺子爱吃包子皮完成签到,获得积分10
15秒前
15秒前
yyxhahaha发布了新的文献求助10
15秒前
ggb发布了新的文献求助10
17秒前
SciGPT应助如意的秋白采纳,获得10
17秒前
玲KYT呢完成签到,获得积分10
17秒前
怡然的灵波完成签到,获得积分10
18秒前
事事顺利完成签到,获得积分10
19秒前
小王同学发布了新的文献求助10
19秒前
咖啡加糖完成签到,获得积分10
19秒前
20秒前
20秒前
高分求助中
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Academia de Coimbra: 1537-1990: história, praxe, boémia e estudo, partidas e piadas, organismos académicos 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3120530
求助须知:如何正确求助?哪些是违规求助? 2771150
关于积分的说明 7706625
捐赠科研通 2426370
什么是DOI,文献DOI怎么找? 1288511
科研通“疑难数据库(出版商)”最低求助积分说明 621036
版权声明 600069