已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis

计算机科学 情绪分析 人工智能 联营 循环神经网络 深度学习 卷积神经网络 图层(电子) 模式识别(心理学) 机器学习 人工神经网络 有机化学 化学
作者
Mohammad Ehsan Basiri,Shahla Nemati,Moloud Abdar,Erik Cambria,U. Rajendra Acharya
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:115: 279-294 被引量:565
标识
DOI:10.1016/j.future.2020.08.005
摘要

Sentiment analysis has been a hot research topic in natural language processing and data mining fields in the last decade. Recently, deep neural network (DNN) models are being applied to sentiment analysis tasks to obtain promising results. Among various neural architectures applied for sentiment analysis, long short-term memory (LSTM) models and its variants such as gated recurrent unit (GRU) have attracted increasing attention. Although these models are capable of processing sequences of arbitrary length, using them in the feature extraction layer of a DNN makes the feature space high dimensional. Another drawback of such models is that they consider different features equally important. To address these problems, we propose an Attention-based Bidirectional CNN-RNN Deep Model (ABCDM). By utilizing two independent bidirectional LSTM and GRU layers, ABCDM will extract both past and future contexts by considering temporal information flow in both directions. Also, the attention mechanism is applied on the outputs of bidirectional layers of ABCDM to put more or less emphasis on different words. To reduce the dimensionality of features and extract position-invariant local features, ABCDM utilizes convolution and pooling mechanisms. The effectiveness of ABCDM is evaluated on sentiment polarity detection which is the most common and essential task of sentiment analysis. Experiments were conducted on five review and three Twitter datasets. The results of comparing ABCDM with six recently proposed DNNs for sentiment analysis show that ABCDM achieves state-of-the-art results on both long review and short tweet polarity classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
charint完成签到,获得积分10
1秒前
远方完成签到,获得积分10
2秒前
猪猪hero应助忧心的寄松采纳,获得10
4秒前
桐桐应助高兴凡儿采纳,获得10
4秒前
8秒前
忧心的寄松完成签到,获得积分10
10秒前
dsgr发布了新的文献求助10
15秒前
15秒前
糯米糍发布了新的文献求助10
19秒前
英俊的铭应助zcm采纳,获得10
20秒前
21秒前
张aa完成签到 ,获得积分20
25秒前
光亮雁玉发布了新的文献求助10
25秒前
26秒前
标致夜蕾发布了新的文献求助10
27秒前
Fan完成签到,获得积分10
29秒前
jokerhoney完成签到,获得积分10
29秒前
Zoe完成签到 ,获得积分10
31秒前
33秒前
34秒前
javaxixi完成签到 ,获得积分10
35秒前
秋林完成签到,获得积分10
38秒前
zcm发布了新的文献求助10
39秒前
39秒前
41秒前
43秒前
orixero应助YYYZZX1采纳,获得10
45秒前
46秒前
闪耀的芝士蛋挞完成签到,获得积分10
47秒前
Iris完成签到 ,获得积分10
48秒前
52秒前
量子星尘发布了新的文献求助10
53秒前
yunsww完成签到,获得积分10
53秒前
张翰林发布了新的文献求助10
56秒前
Hello应助扳手已就位采纳,获得10
58秒前
可爱的函函应助栗子鱼采纳,获得10
59秒前
yangxi发布了新的文献求助10
59秒前
彼岸花开发布了新的文献求助10
1分钟前
1分钟前
xiaotudou95完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959971
求助须知:如何正确求助?哪些是违规求助? 3506216
关于积分的说明 11128425
捐赠科研通 3238197
什么是DOI,文献DOI怎么找? 1789577
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803042