ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis

计算机科学 情绪分析 人工智能 联营 循环神经网络 深度学习 卷积神经网络 图层(电子) 维数之咒 模式识别(心理学) 机器学习 人工神经网络 有机化学 化学
作者
Mohammad Ehsan Basiri,Shahla Nemati,Moloud Abdar,Erik Cambria,U. Rajendra Acharya
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:115: 279-294 被引量:653
标识
DOI:10.1016/j.future.2020.08.005
摘要

Sentiment analysis has been a hot research topic in natural language processing and data mining fields in the last decade. Recently, deep neural network (DNN) models are being applied to sentiment analysis tasks to obtain promising results. Among various neural architectures applied for sentiment analysis, long short-term memory (LSTM) models and its variants such as gated recurrent unit (GRU) have attracted increasing attention. Although these models are capable of processing sequences of arbitrary length, using them in the feature extraction layer of a DNN makes the feature space high dimensional. Another drawback of such models is that they consider different features equally important. To address these problems, we propose an Attention-based Bidirectional CNN-RNN Deep Model (ABCDM). By utilizing two independent bidirectional LSTM and GRU layers, ABCDM will extract both past and future contexts by considering temporal information flow in both directions. Also, the attention mechanism is applied on the outputs of bidirectional layers of ABCDM to put more or less emphasis on different words. To reduce the dimensionality of features and extract position-invariant local features, ABCDM utilizes convolution and pooling mechanisms. The effectiveness of ABCDM is evaluated on sentiment polarity detection which is the most common and essential task of sentiment analysis. Experiments were conducted on five review and three Twitter datasets. The results of comparing ABCDM with six recently proposed DNNs for sentiment analysis show that ABCDM achieves state-of-the-art results on both long review and short tweet polarity classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅的觅儿完成签到,获得积分10
刚刚
1秒前
Hanoi347应助niko采纳,获得10
1秒前
怪点衣衣完成签到,获得积分10
1秒前
Merciful完成签到 ,获得积分10
1秒前
赘婿应助马上毕业采纳,获得10
2秒前
尊敬秋双完成签到,获得积分10
2秒前
吴wu发布了新的文献求助10
2秒前
3秒前
3秒前
酷波er应助阳大哥采纳,获得10
3秒前
4秒前
5秒前
5秒前
Repesent完成签到,获得积分10
6秒前
6秒前
6秒前
Aliya完成签到 ,获得积分10
6秒前
风格发布了新的文献求助30
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
Irissun发布了新的文献求助10
8秒前
科研通AI6应助niko采纳,获得10
8秒前
8秒前
科研通AI6应助niko采纳,获得10
8秒前
科研通AI6应助niko采纳,获得10
8秒前
jie发布了新的文献求助10
9秒前
catnipz完成签到,获得积分10
10秒前
不去明知山完成签到 ,获得积分10
10秒前
YiXianCoA发布了新的文献求助10
11秒前
13秒前
14秒前
爱马仕完成签到,获得积分10
15秒前
jie完成签到,获得积分10
15秒前
NexusExplorer应助bai采纳,获得50
15秒前
16秒前
16秒前
马上毕业发布了新的文献求助10
16秒前
匹诺曹发布了新的文献求助10
17秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569502
求助须知:如何正确求助?哪些是违规求助? 4654064
关于积分的说明 14709700
捐赠科研通 4595842
什么是DOI,文献DOI怎么找? 2522015
邀请新用户注册赠送积分活动 1493350
关于科研通互助平台的介绍 1463987