ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis

计算机科学 情绪分析 人工智能 联营 循环神经网络 深度学习 卷积神经网络 图层(电子) 维数之咒 模式识别(心理学) 机器学习 人工神经网络 有机化学 化学
作者
Mohammad Ehsan Basiri,Shahla Nemati,Moloud Abdar,Erik Cambria,U. Rajendra Acharya
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:115: 279-294 被引量:653
标识
DOI:10.1016/j.future.2020.08.005
摘要

Sentiment analysis has been a hot research topic in natural language processing and data mining fields in the last decade. Recently, deep neural network (DNN) models are being applied to sentiment analysis tasks to obtain promising results. Among various neural architectures applied for sentiment analysis, long short-term memory (LSTM) models and its variants such as gated recurrent unit (GRU) have attracted increasing attention. Although these models are capable of processing sequences of arbitrary length, using them in the feature extraction layer of a DNN makes the feature space high dimensional. Another drawback of such models is that they consider different features equally important. To address these problems, we propose an Attention-based Bidirectional CNN-RNN Deep Model (ABCDM). By utilizing two independent bidirectional LSTM and GRU layers, ABCDM will extract both past and future contexts by considering temporal information flow in both directions. Also, the attention mechanism is applied on the outputs of bidirectional layers of ABCDM to put more or less emphasis on different words. To reduce the dimensionality of features and extract position-invariant local features, ABCDM utilizes convolution and pooling mechanisms. The effectiveness of ABCDM is evaluated on sentiment polarity detection which is the most common and essential task of sentiment analysis. Experiments were conducted on five review and three Twitter datasets. The results of comparing ABCDM with six recently proposed DNNs for sentiment analysis show that ABCDM achieves state-of-the-art results on both long review and short tweet polarity classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
king完成签到,获得积分10
刚刚
下一秒微笑完成签到,获得积分10
1秒前
2秒前
2秒前
成就乘云发布了新的文献求助10
3秒前
Meyako应助小懒采纳,获得20
3秒前
4秒前
4秒前
两千发布了新的文献求助10
4秒前
雷乾完成签到,获得积分10
4秒前
JamesPei应助选择性哑巴采纳,获得10
5秒前
accept小猫完成签到,获得积分10
6秒前
6秒前
6秒前
my完成签到,获得积分20
6秒前
香蕉觅云应助托塔大王采纳,获得10
6秒前
沉稳发布了新的文献求助10
7秒前
7秒前
星辰大海应助雨做的云霞采纳,获得10
7秒前
7秒前
Raven应助xiaoX12138采纳,获得10
8秒前
8秒前
心灵美凝竹完成签到 ,获得积分10
8秒前
8秒前
霸气的仙人掌应助123采纳,获得20
8秒前
xtt发布了新的文献求助10
9秒前
lws完成签到,获得积分10
9秒前
9秒前
成就乘云完成签到,获得积分20
9秒前
完美世界应助qqq采纳,获得10
10秒前
11秒前
王冉冉完成签到,获得积分10
11秒前
12秒前
CodeCraft应助hahaaa采纳,获得10
13秒前
123完成签到,获得积分10
13秒前
ll完成签到 ,获得积分10
13秒前
HC发布了新的文献求助10
13秒前
英俊的铭应助gww采纳,获得10
13秒前
Kirayi完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351999
求助须知:如何正确求助?哪些是违规求助? 4484908
关于积分的说明 13961093
捐赠科研通 4384639
什么是DOI,文献DOI怎么找? 2409094
邀请新用户注册赠送积分活动 1401552
关于科研通互助平台的介绍 1375095