亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis

计算机科学 情绪分析 人工智能 联营 循环神经网络 深度学习 卷积神经网络 图层(电子) 维数之咒 模式识别(心理学) 机器学习 人工神经网络 有机化学 化学
作者
Mohammad Ehsan Basiri,Shahla Nemati,Moloud Abdar,Erik Cambria,U. Rajendra Acharya
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:115: 279-294 被引量:653
标识
DOI:10.1016/j.future.2020.08.005
摘要

Sentiment analysis has been a hot research topic in natural language processing and data mining fields in the last decade. Recently, deep neural network (DNN) models are being applied to sentiment analysis tasks to obtain promising results. Among various neural architectures applied for sentiment analysis, long short-term memory (LSTM) models and its variants such as gated recurrent unit (GRU) have attracted increasing attention. Although these models are capable of processing sequences of arbitrary length, using them in the feature extraction layer of a DNN makes the feature space high dimensional. Another drawback of such models is that they consider different features equally important. To address these problems, we propose an Attention-based Bidirectional CNN-RNN Deep Model (ABCDM). By utilizing two independent bidirectional LSTM and GRU layers, ABCDM will extract both past and future contexts by considering temporal information flow in both directions. Also, the attention mechanism is applied on the outputs of bidirectional layers of ABCDM to put more or less emphasis on different words. To reduce the dimensionality of features and extract position-invariant local features, ABCDM utilizes convolution and pooling mechanisms. The effectiveness of ABCDM is evaluated on sentiment polarity detection which is the most common and essential task of sentiment analysis. Experiments were conducted on five review and three Twitter datasets. The results of comparing ABCDM with six recently proposed DNNs for sentiment analysis show that ABCDM achieves state-of-the-art results on both long review and short tweet polarity classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助小江采纳,获得10
9秒前
受伤纲完成签到 ,获得积分10
13秒前
13秒前
flyinthesky完成签到,获得积分10
14秒前
花花公子完成签到,获得积分10
20秒前
深情安青应助Cmqq采纳,获得10
31秒前
36秒前
张晓祁完成签到,获得积分10
36秒前
小江发布了新的文献求助10
41秒前
yueying完成签到,获得积分10
47秒前
SciGPT应助科研通管家采纳,获得10
48秒前
BowieHuang应助科研通管家采纳,获得10
48秒前
BowieHuang应助科研通管家采纳,获得10
48秒前
BowieHuang应助科研通管家采纳,获得10
48秒前
鲤鱼笑南完成签到,获得积分10
48秒前
54秒前
1分钟前
1分钟前
1分钟前
Mia发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
SciGPT应助Mia采纳,获得10
1分钟前
1分钟前
丽君发布了新的文献求助10
1分钟前
sidashu完成签到,获得积分10
1分钟前
田様应助Cmqq采纳,获得10
2分钟前
乌乌完成签到,获得积分10
2分钟前
萌仔完成签到,获得积分10
2分钟前
萌仔发布了新的文献求助10
2分钟前
Mei完成签到,获得积分10
2分钟前
2分钟前
小金完成签到,获得积分20
2分钟前
稳重的小刺猬完成签到,获得积分10
2分钟前
2分钟前
林林发布了新的文献求助10
2分钟前
桐桐应助科研通管家采纳,获得10
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685512
关于积分的说明 14838542
捐赠科研通 4670527
什么是DOI,文献DOI怎么找? 2538202
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904