ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis

计算机科学 情绪分析 人工智能 联营 循环神经网络 深度学习 卷积神经网络 图层(电子) 模式识别(心理学) 机器学习 人工神经网络 有机化学 化学
作者
Mohammad Ehsan Basiri,Shahla Nemati,Moloud Abdar,Erik Cambria,U. Rajendra Acharya
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:115: 279-294 被引量:565
标识
DOI:10.1016/j.future.2020.08.005
摘要

Sentiment analysis has been a hot research topic in natural language processing and data mining fields in the last decade. Recently, deep neural network (DNN) models are being applied to sentiment analysis tasks to obtain promising results. Among various neural architectures applied for sentiment analysis, long short-term memory (LSTM) models and its variants such as gated recurrent unit (GRU) have attracted increasing attention. Although these models are capable of processing sequences of arbitrary length, using them in the feature extraction layer of a DNN makes the feature space high dimensional. Another drawback of such models is that they consider different features equally important. To address these problems, we propose an Attention-based Bidirectional CNN-RNN Deep Model (ABCDM). By utilizing two independent bidirectional LSTM and GRU layers, ABCDM will extract both past and future contexts by considering temporal information flow in both directions. Also, the attention mechanism is applied on the outputs of bidirectional layers of ABCDM to put more or less emphasis on different words. To reduce the dimensionality of features and extract position-invariant local features, ABCDM utilizes convolution and pooling mechanisms. The effectiveness of ABCDM is evaluated on sentiment polarity detection which is the most common and essential task of sentiment analysis. Experiments were conducted on five review and three Twitter datasets. The results of comparing ABCDM with six recently proposed DNNs for sentiment analysis show that ABCDM achieves state-of-the-art results on both long review and short tweet polarity classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑砖头发布了新的文献求助10
1秒前
科目三应助饭小心采纳,获得10
1秒前
1秒前
科研通AI2S应助花陵采纳,获得10
1秒前
善学以致用应助大吴克采纳,获得10
3秒前
老实雁蓉完成签到,获得积分10
3秒前
良辰应助zjh采纳,获得10
3秒前
yulong完成签到 ,获得积分10
4秒前
热心的早晨完成签到,获得积分10
4秒前
如此纠结完成签到,获得积分10
4秒前
多多就是小豆芽完成签到 ,获得积分10
5秒前
5秒前
Owen应助Lwxbb采纳,获得10
5秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
5秒前
小小杜完成签到,获得积分10
5秒前
初心完成签到,获得积分20
5秒前
丽丽完成签到 ,获得积分10
5秒前
学术蟑螂发布了新的文献求助10
5秒前
文艺的竺完成签到,获得积分10
6秒前
小林太郎应助斯奈克采纳,获得20
6秒前
6秒前
情怀应助执笔曦倾年采纳,获得10
6秒前
6秒前
6秒前
6秒前
科研民工完成签到,获得积分10
7秒前
FR完成签到,获得积分10
7秒前
8秒前
小马甲应助浩浩大人采纳,获得10
8秒前
8秒前
小小杜发布了新的文献求助20
8秒前
打打应助袁国惠采纳,获得10
8秒前
8秒前
哈哈哈完成签到,获得积分10
9秒前
小张发布了新的文献求助10
9秒前
温柔若完成签到,获得积分10
9秒前
称心的问薇完成签到,获得积分10
10秒前
10秒前
高兴的半凡完成签到 ,获得积分10
11秒前
123完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740