ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis

计算机科学 情绪分析 人工智能 联营 循环神经网络 深度学习 卷积神经网络 图层(电子) 模式识别(心理学) 机器学习 人工神经网络 有机化学 化学
作者
Mohammad Ehsan Basiri,Shahla Nemati,Moloud Abdar,Erik Cambria,U. Rajendra Acharya
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:115: 279-294 被引量:565
标识
DOI:10.1016/j.future.2020.08.005
摘要

Sentiment analysis has been a hot research topic in natural language processing and data mining fields in the last decade. Recently, deep neural network (DNN) models are being applied to sentiment analysis tasks to obtain promising results. Among various neural architectures applied for sentiment analysis, long short-term memory (LSTM) models and its variants such as gated recurrent unit (GRU) have attracted increasing attention. Although these models are capable of processing sequences of arbitrary length, using them in the feature extraction layer of a DNN makes the feature space high dimensional. Another drawback of such models is that they consider different features equally important. To address these problems, we propose an Attention-based Bidirectional CNN-RNN Deep Model (ABCDM). By utilizing two independent bidirectional LSTM and GRU layers, ABCDM will extract both past and future contexts by considering temporal information flow in both directions. Also, the attention mechanism is applied on the outputs of bidirectional layers of ABCDM to put more or less emphasis on different words. To reduce the dimensionality of features and extract position-invariant local features, ABCDM utilizes convolution and pooling mechanisms. The effectiveness of ABCDM is evaluated on sentiment polarity detection which is the most common and essential task of sentiment analysis. Experiments were conducted on five review and three Twitter datasets. The results of comparing ABCDM with six recently proposed DNNs for sentiment analysis show that ABCDM achieves state-of-the-art results on both long review and short tweet polarity classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太吾墨完成签到,获得积分10
1秒前
3秒前
由天与发布了新的文献求助10
4秒前
5秒前
隐形曼青应助王一土采纳,获得10
6秒前
Owen应助zwhy采纳,获得10
7秒前
子衿完成签到 ,获得积分10
7秒前
8秒前
Yyy发布了新的文献求助10
11秒前
13秒前
15秒前
15秒前
wbh完成签到 ,获得积分10
17秒前
hx完成签到,获得积分10
17秒前
不在雨中淋雨完成签到,获得积分10
17秒前
思源应助务实的夏菡采纳,获得10
17秒前
13134发布了新的文献求助20
19秒前
20秒前
20秒前
su123完成签到,获得积分10
21秒前
王一土发布了新的文献求助10
21秒前
21秒前
su123发布了新的文献求助10
24秒前
完美世界应助Mxii采纳,获得30
26秒前
13134完成签到,获得积分10
27秒前
北欧海盗发布了新的文献求助10
28秒前
颉嘉乐发布了新的文献求助10
28秒前
liuke完成签到,获得积分10
28秒前
29秒前
laogao完成签到,获得积分10
31秒前
王一土完成签到,获得积分10
32秒前
34秒前
神勇的薯片完成签到,获得积分10
34秒前
bkagyin应助Hawk采纳,获得10
35秒前
炙热冰夏发布了新的文献求助10
37秒前
Jasper应助久居i采纳,获得10
38秒前
麦客完成签到,获得积分10
39秒前
爆米花应助fly采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
充电宝应助科研通管家采纳,获得10
41秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164190
求助须知:如何正确求助?哪些是违规求助? 2814916
关于积分的说明 7906988
捐赠科研通 2474500
什么是DOI,文献DOI怎么找? 1317533
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228