ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis

计算机科学 情绪分析 人工智能 联营 循环神经网络 深度学习 卷积神经网络 图层(电子) 维数之咒 模式识别(心理学) 机器学习 人工神经网络 有机化学 化学
作者
Mohammad Ehsan Basiri,Shahla Nemati,Moloud Abdar,Erik Cambria,U. Rajendra Acharya
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:115: 279-294 被引量:653
标识
DOI:10.1016/j.future.2020.08.005
摘要

Sentiment analysis has been a hot research topic in natural language processing and data mining fields in the last decade. Recently, deep neural network (DNN) models are being applied to sentiment analysis tasks to obtain promising results. Among various neural architectures applied for sentiment analysis, long short-term memory (LSTM) models and its variants such as gated recurrent unit (GRU) have attracted increasing attention. Although these models are capable of processing sequences of arbitrary length, using them in the feature extraction layer of a DNN makes the feature space high dimensional. Another drawback of such models is that they consider different features equally important. To address these problems, we propose an Attention-based Bidirectional CNN-RNN Deep Model (ABCDM). By utilizing two independent bidirectional LSTM and GRU layers, ABCDM will extract both past and future contexts by considering temporal information flow in both directions. Also, the attention mechanism is applied on the outputs of bidirectional layers of ABCDM to put more or less emphasis on different words. To reduce the dimensionality of features and extract position-invariant local features, ABCDM utilizes convolution and pooling mechanisms. The effectiveness of ABCDM is evaluated on sentiment polarity detection which is the most common and essential task of sentiment analysis. Experiments were conducted on five review and three Twitter datasets. The results of comparing ABCDM with six recently proposed DNNs for sentiment analysis show that ABCDM achieves state-of-the-art results on both long review and short tweet polarity classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉远山发布了新的文献求助10
刚刚
xingxing发布了新的文献求助10
刚刚
称心言完成签到 ,获得积分10
刚刚
蔡继海发布了新的文献求助10
2秒前
冻结完成签到 ,获得积分10
3秒前
Zhang发布了新的文献求助10
3秒前
来自3602完成签到,获得积分10
3秒前
曾丽红完成签到,获得积分10
4秒前
4秒前
4秒前
NING完成签到,获得积分10
5秒前
6秒前
WGQ完成签到,获得积分10
6秒前
JamesPei应助89采纳,获得10
6秒前
7秒前
彩色的涵瑶完成签到,获得积分10
8秒前
体贴擎发布了新的文献求助10
8秒前
8秒前
9秒前
乐观半凡发布了新的文献求助10
9秒前
10秒前
10秒前
森活鱼块发布了新的文献求助10
10秒前
10秒前
Iris_Zhang完成签到 ,获得积分10
11秒前
11秒前
Yanglk完成签到,获得积分10
11秒前
11秒前
朱文韬完成签到,获得积分10
12秒前
12秒前
张天泽完成签到,获得积分10
13秒前
黑沧浪亭发布了新的文献求助10
13秒前
14秒前
乐乐应助乐观半凡采纳,获得10
14秒前
刚刚好完成签到,获得积分10
14秒前
Taurus_Ho发布了新的文献求助10
15秒前
fanfan发布了新的文献求助30
15秒前
辛巴先生完成签到,获得积分10
15秒前
Zhang发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536474
求助须知:如何正确求助?哪些是违规求助? 4624146
关于积分的说明 14590801
捐赠科研通 4564532
什么是DOI,文献DOI怎么找? 2501843
邀请新用户注册赠送积分活动 1480597
关于科研通互助平台的介绍 1451838