强化学习
计算机科学
运动规划
弹道
汽车工业
路径(计算)
过程(计算)
模型预测控制
人工神经网络
控制(管理)
航程(航空)
人工智能
机器学习
机器人
工程类
操作系统
物理
航空航天工程
程序设计语言
天文
作者
Árpád Fehér,Szilárd Aradi,Tamás Bécsi
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2020-10-14
卷期号:8: 187470-187482
被引量:8
标识
DOI:10.1109/access.2020.3031037
摘要
Motion planning plays an essential role in designing self-driving functions for connected and autonomous vehicles. The methods need to provide a feasible trajectory for the vehicle to follow, fulfilling different requirements, such as safety, efficiency, and passenger comfort. In this area, algorithms must also meet strict real-time expectations, since, especially in an emergency, the decision time is limited, which raises a trade-off for the feasibility requirements. This article proposes a hierarchical path planning solution for evasive maneuvering, where a Twin Delayed DDPG reinforcement learning agent generates the parameters of a geometric path consisting of chlotoids and straight sections, and an underlying model predictive control loop fulfills the trajectory following tasks. The method is applied to the automotive double lane-change test, a common emergency situation, comparing its results with human drivers' performance using a dynamic simulation environment. Besides the test's standardized parameters, a broader range of topological layouts is chosen, both for the training and performance evaluation. The results show that the proposed method highly outperforms human drivers, especially in challenging situations, while meeting the computational requirements, as the pre-trained neural network and path generation algorithm can provide a solution in an instant, based on the experience gained during the training process.
科研通智能强力驱动
Strongly Powered by AbleSci AI