孔雀绿
过氧化氢
检出限
降级(电信)
吸附
亮绿色
线性范围
材料科学
动力学
选择性
朗缪尔吸附模型
化学工程
核化学
色谱法
催化作用
化学
有机化学
工程类
物理
电信
量子力学
计算机科学
作者
Saeed Reza Hormozi Jangi,Hamid Khoshalhan Davoudli,Yousef Delshad,Mohammad Reza Hormozi Jangi,Ali Reza Hormozi Jangi
标识
DOI:10.1016/j.surfin.2020.100771
摘要
For the first time, a novel multinanozyme system was used for the highly efficient bio-degradation of organic dye, malachite green, from real water media, and ultra-sensitive detection of H2O2 by the simultaneous use of MnO2- and SiO2@Fe3O4-nanozymes. The nanozymes were characterized for their size, morphology, crystalline structure, and peroxidase-like activity. Regard H2O2 detection, a linear range from 1.0-100.0 µM, and a detection limit of 0.26 µM were achieved. The method exhibited ultra-selectivity toward H2O2 detection against co-existing compounds and soluble oxygen. Regard, malachite green degradation, upon this system, the dye was degraded 99.5% within 5.0 min which shows an excellent improvement for dye removal from water media using the multinanozyme system compared to the corresponding single-nanozyme systems (50.0% after 5.0 min). The reusability studies showed that the peroxidase-like activity of the multinanozyme system was stabled for 10 and 15 reuses toward dye degradation and H2O2 determination, respectively. Kinetics and adsorption isotherms for malachite green removal using the multinanozyme system were also evaluated, revealing a pseudo-first-order kinetics and Langmuir adsorption model for dye degradation. The method was successfully applied for H2O2 quantification in milk samples and organic dye degradation from real water media.
科研通智能强力驱动
Strongly Powered by AbleSci AI