3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization

脚手架 生物医学工程 材料科学 3D生物打印 间充质干细胞 明胶 组织工程 复合数 自愈水凝胶 纳米技术 化学 复合材料 细胞生物学 医学 生物 高分子化学 生物化学
作者
Jianhua Zhang,Hande Eyisoylu,Xiao‐Hua Qin,Marina Rubert,Ralph Müller
出处
期刊:Acta Biomaterialia [Elsevier]
卷期号:121: 637-652 被引量:132
标识
DOI:10.1016/j.actbio.2020.12.026
摘要

Bioprinting is a promising technique for facilitating the fabrication of engineered bone tissues for patient-specific defect repair and for developing in vitro tissue/organ models for ex vivo tests. However, polymer-based ink materials often result in insufficient mechanical strength, low scaffold fidelity and loss of osteogenesis induction because of the intrinsic swelling/shrinking and bioinert properties of most polymeric hydrogels. Here, we developed a human mesenchymal stem cells (hMSCs)-laden graphene oxide (GO)/alginate/gelatin composite bioink to form 3D bone-mimicking scaffolds using a 3D bioprinting technique. Our results showed that the GO composite bioinks (0.5GO, 1GO, 2GO) with higher GO concentrations (0.5, 1 and 2 mg/ml) improved the bioprintability, scaffold fidelity, compressive modulus and cell viability at day 1. The higher GO concentration increased the cell body size and DNA content, but the 2GO group swelled and had the lowest compressive modulus at day 42. The 1GO group had the highest osteogenic differentiation of hMSC with the upregulation of osteogenic-related gene (ALPL, BGLAP, PHEX) expression. To mimic critical-sized calvarial bone defects in mice and prove scaffold fidelity, 3D cell-laden GO defect scaffolds with complex geometries were successfully bioprinted. 1GO maintained the best scaffold fidelity and had the highest mineral volume after culturing in the bioreactor for 42 days. In conclusion, GO composite bioinks had better bioprintability, scaffold fidelity, cell proliferation, osteogenic differentiation and ECM mineralization than the pure alginate/gelatin system. The optimal GO group was 1GO, which demonstrated the potential for 3D bioprinting of bone tissue models and tissue engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yaaaa完成签到,获得积分10
刚刚
喵喵喵的喵喵喵完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
王老裂完成签到,获得积分10
2秒前
RC_Wang应助aaa采纳,获得10
2秒前
dyk驳回了orixero应助
3秒前
俭朴的采波完成签到 ,获得积分10
3秒前
小林太郎应助欢喜煎饼采纳,获得30
4秒前
田一发布了新的文献求助10
4秒前
LKOBES发布了新的文献求助10
4秒前
5秒前
SciGPT应助西西弗斯采纳,获得10
5秒前
之焕完成签到 ,获得积分10
6秒前
细心道消完成签到,获得积分10
6秒前
Bocy发布了新的文献求助10
6秒前
wisteety完成签到,获得积分10
7秒前
7秒前
吴天啸发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
9秒前
隐形曼青应助夏侯乌采纳,获得10
10秒前
小田发布了新的文献求助10
10秒前
得我发布了新的文献求助10
10秒前
11秒前
li发布了新的文献求助10
12秒前
13秒前
领导范儿应助bingschuan采纳,获得10
13秒前
吴天啸完成签到,获得积分10
13秒前
14秒前
wisteety发布了新的文献求助10
14秒前
LKOBES完成签到,获得积分10
14秒前
新星发布了新的文献求助10
14秒前
rosalie完成签到,获得积分10
14秒前
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514481
求助须知:如何正确求助?哪些是违规求助? 3096859
关于积分的说明 9232899
捐赠科研通 2791845
什么是DOI,文献DOI怎么找? 1532076
邀请新用户注册赠送积分活动 711775
科研通“疑难数据库(出版商)”最低求助积分说明 707031