3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization

脚手架 生物医学工程 材料科学 3D生物打印 间充质干细胞 明胶 组织工程 复合数 自愈水凝胶 纳米技术 化学 复合材料 细胞生物学 医学 生物 高分子化学 生物化学
作者
Jianhua Zhang,Hande Eyisoylu,Xiao‐Hua Qin,Marina Rubert,Ralph Müller
出处
期刊:Acta Biomaterialia [Elsevier]
卷期号:121: 637-652 被引量:132
标识
DOI:10.1016/j.actbio.2020.12.026
摘要

Bioprinting is a promising technique for facilitating the fabrication of engineered bone tissues for patient-specific defect repair and for developing in vitro tissue/organ models for ex vivo tests. However, polymer-based ink materials often result in insufficient mechanical strength, low scaffold fidelity and loss of osteogenesis induction because of the intrinsic swelling/shrinking and bioinert properties of most polymeric hydrogels. Here, we developed a human mesenchymal stem cells (hMSCs)-laden graphene oxide (GO)/alginate/gelatin composite bioink to form 3D bone-mimicking scaffolds using a 3D bioprinting technique. Our results showed that the GO composite bioinks (0.5GO, 1GO, 2GO) with higher GO concentrations (0.5, 1 and 2 mg/ml) improved the bioprintability, scaffold fidelity, compressive modulus and cell viability at day 1. The higher GO concentration increased the cell body size and DNA content, but the 2GO group swelled and had the lowest compressive modulus at day 42. The 1GO group had the highest osteogenic differentiation of hMSC with the upregulation of osteogenic-related gene (ALPL, BGLAP, PHEX) expression. To mimic critical-sized calvarial bone defects in mice and prove scaffold fidelity, 3D cell-laden GO defect scaffolds with complex geometries were successfully bioprinted. 1GO maintained the best scaffold fidelity and had the highest mineral volume after culturing in the bioreactor for 42 days. In conclusion, GO composite bioinks had better bioprintability, scaffold fidelity, cell proliferation, osteogenic differentiation and ECM mineralization than the pure alginate/gelatin system. The optimal GO group was 1GO, which demonstrated the potential for 3D bioprinting of bone tissue models and tissue engineering applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hooke发布了新的文献求助10
刚刚
KIC发布了新的文献求助10
1秒前
1秒前
1秒前
含蓄若云完成签到,获得积分10
1秒前
1秒前
研友_VZG7GZ应助林二车娜姆采纳,获得30
1秒前
隐形飞雪完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
DDEEE完成签到,获得积分10
3秒前
3秒前
Huanglj完成签到,获得积分10
3秒前
小小发布了新的文献求助30
3秒前
3秒前
小鱼马发布了新的文献求助10
3秒前
朱小燕发布了新的文献求助10
4秒前
weixun完成签到,获得积分10
4秒前
wwf发布了新的文献求助30
4秒前
勤奋弋完成签到,获得积分10
5秒前
希望天下0贩的0应助www采纳,获得10
5秒前
Moxley完成签到,获得积分10
5秒前
一大个太阳完成签到,获得积分10
5秒前
yyyyyy发布了新的文献求助10
5秒前
Chenly发布了新的文献求助30
5秒前
chiron完成签到,获得积分10
6秒前
蔡小娜完成签到,获得积分20
6秒前
Yixin_Niu发布了新的文献求助50
6秒前
gulu发布了新的文献求助10
6秒前
6秒前
Eina发布了新的文献求助10
6秒前
DDEEE发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
向上完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894