Privacy-preserving blockchain-based federated learning for traffic flow prediction

块链 计算机科学 差别隐私 计算机安全 单点故障 联合学习 原始数据 分布式计算 数据挖掘 程序设计语言
作者
Yuanhang Qi,M. Shamim Hossain,Jiangtian Nie,Xuandi Li
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:117: 328-337 被引量:237
标识
DOI:10.1016/j.future.2020.12.003
摘要

As accurate and timely traffic flow information is extremely important for traffic management, traffic flow prediction has become a vital component of intelligent transportation systems. However, existing traffic flow prediction methods based on centralized machine learning need to gather raw data for model training, which involves serious privacy exposure risks. To address these problems, federated learning that shares model updates without exchanging raw data, has recently been introduced as an efficient solution for achieving privacy protection. However, the existing federated learning frameworks are based on a centralized model coordinator that still suffers from severe security challenges, such as a single point of failure. Thereby, a consortium blockchain-based federated learning framework is proposed to enable decentralized, reliable, and secure federated learning without a centralized model coordinator. In the proposed framework, the model updates from distributed vehicles are verified by miners to prevent unreliable model updates and are then stored on the blockchain. In addition, to further protect model privacy on the blockchain, a differential privacy method with a noise-adding mechanism is applied for the blockchain-based federated learning framework. Numerical results illustrate that the proposed schemes can effectively prevent data poisoning attacks and improve the privacy protection of model updates for secure and privacy-preserving traffic flow prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
XIEH完成签到,获得积分10
2秒前
2秒前
2秒前
KK完成签到,获得积分10
3秒前
6秒前
dan1029发布了新的文献求助10
7秒前
莎莎发布了新的文献求助10
7秒前
丘比特应助hinamo采纳,获得10
8秒前
samfengkun完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
星辰大海应助莎莎采纳,获得10
14秒前
14秒前
科研通AI2S应助WTF采纳,获得10
15秒前
15秒前
15秒前
大树2.0发布了新的文献求助10
16秒前
寒冷毛衣发布了新的文献求助10
16秒前
17秒前
黑巧的融化完成签到 ,获得积分10
18秒前
洛必达完成签到,获得积分10
19秒前
所所应助飞雪采纳,获得10
19秒前
生命化育发布了新的文献求助10
20秒前
21秒前
璐璐发布了新的文献求助10
21秒前
luozhuang2023发布了新的文献求助10
22秒前
FashionBoy应助宇文山柏采纳,获得10
23秒前
FashionBoy应助寒冷毛衣采纳,获得10
23秒前
cara应助个性的海秋采纳,获得10
25秒前
红星路吃饼子的派大星完成签到 ,获得积分10
25秒前
深情安青应助乐观的颦采纳,获得10
26秒前
ding应助大树2.0采纳,获得10
26秒前
27秒前
百里瓶窑发布了新的文献求助10
27秒前
geg发布了新的文献求助10
27秒前
生命化育完成签到,获得积分10
28秒前
31秒前
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259778
求助须知:如何正确求助?哪些是违规求助? 2901272
关于积分的说明 8314891
捐赠科研通 2570789
什么是DOI,文献DOI怎么找? 1396675
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631853