Abstract Molecular ionic composites (MICs), made from ionic liquids and a rigid‐rod polymer poly(2,2′‐disulfonyl‐4,4′‐benzidine terephthalamide) (PBDT), are a new type of rigid gel electrolyte that combine fast ion transport with high thermal stability and mechanical strength. In this work, a MIC electrolyte membrane is prepared that is composed of PBDT, lithium bis(trifluoromethylsulfonyl)imide (LiTFSI), and 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr 14 TFSI) in a mass ratio of 10:10:80. The ionic conductivity at 25 ° C is 0.56 mS cm −1 with no added flammable/volatile components. Although the polymer content is only 10 wt%, this MIC membrane is rigid with a tensile modulus of 410 MPa at room temperature. The MIC membrane remains stable and rigid at 200 ° C with the shear storage modulus ( G ′) only slightly decreasing by 35%. Li/MIC/LiFePO 4 cells demonstrate stable cycling performance over a wide temperature range from 23 to 150 ° C. The specific discharge capacity at 100 and 150 ° C at 1 C rate exceeds 160 mAh g −1 . The discharge capacity retention is 99% after 50 cycles at 150 ° C. This stable battery performance shows that this low polymer content MIC membrane qualifies for use as a solid electrolyte in lithium metal batteries operating over a wide temperature range.