材料科学
锂(药物)
电解质
聚合物
膜
复合数
化学工程
极限抗拉强度
热稳定性
离子液体
离子电导率
复合材料
有机化学
电极
化学
物理化学
医学
工程类
内分泌学
催化作用
生物化学
作者
Deyang Yu,Xiaona Pan,Joshua E. Bostwick,Curt J. Zanelotti,Linqin Mu,Ralph H. Colby,Feng Lin,Louis A. Madsen
标识
DOI:10.1002/aenm.202003559
摘要
Abstract Molecular ionic composites (MICs), made from ionic liquids and a rigid‐rod polymer poly(2,2′‐disulfonyl‐4,4′‐benzidine terephthalamide) (PBDT), are a new type of rigid gel electrolyte that combine fast ion transport with high thermal stability and mechanical strength. In this work, a MIC electrolyte membrane is prepared that is composed of PBDT, lithium bis(trifluoromethylsulfonyl)imide (LiTFSI), and 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr 14 TFSI) in a mass ratio of 10:10:80. The ionic conductivity at 25 ° C is 0.56 mS cm −1 with no added flammable/volatile components. Although the polymer content is only 10 wt%, this MIC membrane is rigid with a tensile modulus of 410 MPa at room temperature. The MIC membrane remains stable and rigid at 200 ° C with the shear storage modulus ( G ′) only slightly decreasing by 35%. Li/MIC/LiFePO 4 cells demonstrate stable cycling performance over a wide temperature range from 23 to 150 ° C. The specific discharge capacity at 100 and 150 ° C at 1 C rate exceeds 160 mAh g −1 . The discharge capacity retention is 99% after 50 cycles at 150 ° C. This stable battery performance shows that this low polymer content MIC membrane qualifies for use as a solid electrolyte in lithium metal batteries operating over a wide temperature range.
科研通智能强力驱动
Strongly Powered by AbleSci AI