Artificial intelligence and optical coherence tomography for the automatic characterisation of human atherosclerotic plaques

医学 光学相干层析成像 断层摄影术 放射科 医学物理学 人工智能 计算机科学
作者
Miao Chu,Haibo Jia,Juan Luis Gutiérrez‐Chico,Akiko Maehara,Ziad A. Ali,Xiaoling Zeng,Luping He,Chen Zhao,Mitsuaki Matsumura,Peng Wu,Ming Zeng,Takashi Kubo,Bo Xu,Lianglong Chen,Bo Yu,Gary S. Mintz,William Wijns,Niels Ramsing Holm,Shengxian Tu
出处
期刊:Eurointervention [European Association of Percutaneous Cardiovascular Interventions]
卷期号:17 (1): 41-50 被引量:91
标识
DOI:10.4244/eij-d-20-01355
摘要

Background: Intravascular optical coherence tomography (IVOCT) enables detailed plaque characterisation in vivo, but visual assessment is time-consuming and subjective. Aims: This study aimed to develop and validate an automatic framework for IVOCT plaque characterisation using artificial intelligence (AI). Methods: IVOCT pullbacks from five international centres were analysed in a core lab, annotating basic plaque components, inflammatory markers and other structures. A deep convolutional network with encoding-decoding architecture and pseudo-3D input was developed and trained using hybrid loss. The proposed network was integrated into commercial software to be externally validated on additional IVOCT pullbacks from three international core labs, taking the consensus among core labs as reference. Results: Annotated images from 509 pullbacks (391 patients) were divided into 10,517 and 1,156 cross-sections for the training and testing data sets, respectively. The Dice coefficient of the model was 0.906 for fibrous plaque, 0.848 for calcium and 0.772 for lipid in the testing data set. Excellent agreement in plaque burden quantification was observed between the model and manual measurements (R2=0.98). In the external validation, the software correctly identified 518 out of 598 plaque regions from 300 IVOCT cross-sections, with a diagnostic accuracy of 97.6% (95% CI: 93.4-99.3%) in fibrous plaque, 90.5% (95% CI: 85.2-94.1%) in lipid and 88.5% (95% CI: 82.4-92.7%) in calcium. The median time required for analysis was 21.4 (18.6-25.0) seconds per pullback. Conclusions: A novel AI framework for automatic plaque characterisation in IVOCT was developed, providing excellent diagnostic accuracy in both internal and external validation. This model might reduce subjectivity in image interpretation and facilitate IVOCT quantification of plaque composition, with potential applications in research and IVOCT-guided PCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然乾关注了科研通微信公众号
1秒前
悦耳的菲音完成签到,获得积分20
2秒前
3秒前
大模型应助英俊绿蓉采纳,获得10
3秒前
LuoZuoZhi发布了新的文献求助10
4秒前
Wink14551发布了新的文献求助10
5秒前
啦啦啦啦完成签到,获得积分10
5秒前
时倾完成签到,获得积分10
6秒前
6秒前
啦啦咔嘞发布了新的文献求助10
6秒前
HEIKU应助神勇的薯片采纳,获得10
7秒前
8秒前
8秒前
8秒前
人民群众发布了新的文献求助10
10秒前
11秒前
12秒前
xunzhaokuaile完成签到,获得积分10
13秒前
13秒前
SYY完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
英俊绿蓉完成签到,获得积分10
15秒前
所所应助风中的怜阳采纳,获得10
15秒前
cdercder应助涵涵采纳,获得10
15秒前
Tetrahydron发布了新的文献求助10
15秒前
15秒前
MOON完成签到,获得积分10
16秒前
啦啦咔嘞完成签到,获得积分10
17秒前
Jasper应助Jy采纳,获得10
17秒前
KKKZ发布了新的文献求助10
17秒前
英俊绿蓉发布了新的文献求助10
18秒前
18秒前
芝士草莓蛋挞完成签到 ,获得积分10
18秒前
魔幻安雁发布了新的文献求助10
18秒前
旭日东升发布了新的文献求助10
19秒前
星辰大海应助称心寒松采纳,获得10
20秒前
星辰大海应助超帅雁露采纳,获得10
21秒前
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740937
求助须知:如何正确求助?哪些是违规求助? 3283720
关于积分的说明 10036381
捐赠科研通 3000455
什么是DOI,文献DOI怎么找? 1646510
邀请新用户注册赠送积分活动 783711
科研通“疑难数据库(出版商)”最低求助积分说明 750427