材料科学
纳米晶材料
石墨烯
箔法
粒度
晶界
带隙
纳米晶
猝灭(荧光)
纳米
晶粒生长
纳米技术
复合材料
微观结构
光电子学
光学
物理
荧光
作者
Tong Zhao,Chuan Xu,Wei Ma,Zhibo Liu,Tianya Zhou,Zhen Liu,Shun Feng,Mengjian Zhu,Ning Kang,Dongming Sun,Hui‐Ming Cheng,Wencai Ren
标识
DOI:10.1038/s41467-019-12662-z
摘要
Abstract Nanocrystallization is a well-known strategy to dramatically tune the properties of materials; however, the grain-size effect of graphene at the nanometer scale remains unknown experimentally because of the lack of nanocrystalline samples. Here we report an ultrafast growth of graphene films within a few seconds by quenching a hot metal foil in liquid carbon source. Using Pt foil and ethanol as examples, four kinds of nanocrystalline graphene films with average grain size of ~3.6, 5.8, 8.0, and 10.3 nm are synthesized. It is found that the effect of grain boundary becomes more pronounced at the nanometer scale. In comparison with pristine graphene, the 3.6 nm-grained film retains high strength (101 GPa) and Young’s modulus (576 GPa), whereas the electrical conductivity is declined by over 100 times, showing semiconducting behavior with a bandgap of ~50 meV. This liquid-phase precursor quenching method opens possibilities for ultrafast synthesis of typical graphene materials and other two-dimensional nanocrystalline materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI